A unified construction for the algebro-geometric quasiperiodic solutions of the Lotka-Volterra and relativistic Lotka-Volterra hierarchy

被引:3
作者
Zhao, Peng [1 ]
Fan, Engui [2 ,3 ,4 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Fudan Univ, Inst Math, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] Univ Macau, Dept Math, Macau, Peoples R China
基金
美国国家科学基金会;
关键词
TODA LATTICE; DETERMINANT SOLUTION; LAX REPRESENTATION; RECURSION OPERATOR; R-MATRIX; EQUATION; SYSTEMS;
D O I
10.1063/1.4916676
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a new type of integrable differential-difference hierarchy, namely, the generalized relativistic Lotka-Volterra (GRLV) hierarchy, is introduced. This hierarchy is closely related to Lotka-Volterra lattice and relativistic Lotka-Volterra lattice, which allows us to provide a unified and effective way to obtain some exact solutions for both the Lotka-Volterra hierarchy and the relativistic Lotka-Volterra hierarchy. In particular, we shall construct algebro-geometric quasiperiodic solutions for the LV hierarchy and the RLV hierarchy in a unified manner on the basis of the finite gap integration theory. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] STOCHASTIC LOTKA-VOLTERRA POPULATION DYNAMICS WITH INFINITE DELAY
    Wu, Fuke
    Xu, Yong
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (03) : 641 - 657
  • [32] ASYMPTOTIC BEHAVIOR OF A DELAYED NONLOCAL DISPERSAL LOTKA-VOLTERRA
    Tang, Yiming
    Wu, Xin
    Yuan, Rong
    Geng, Fengjie
    Ma, Zhaohai
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (03): : 1453 - 1482
  • [33] Perturbation theory of the quadratic Lotka-Volterra double center
    Francoise, Jean-Pierre
    Gavrilov, Lubomir
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (05)
  • [34] Coexistence and exclusion of stochastic competitive Lotka-Volterra models
    Nguyen, Dang H.
    Yin, George
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 1192 - 1225
  • [35] Stability and bifurcation in a diffusive Lotka-Volterra system with delay
    Ma, Li
    Guo, Shangjiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (01) : 147 - 177
  • [36] DARBOUX POLYNOMIALS FOR LOTKA-VOLTERRA SYSTEMS IN THREE DIMENSIONS
    Christodoulides, Yiannis T.
    Damianou, Pantelis A.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2009, 16 (03) : 339 - 354
  • [37] Analytic Left Inversion of Multivariable Lotka-Volterra Models
    Gray, W. Steven
    Espinosa, Luis A. Duffaut
    Ebrahimi-Fard, Kurusch
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 6472 - 6477
  • [38] Modelling as Indirect Representation? The Lotka-Volterra Model Revisited
    Knuuttila, Tarja
    Loettgers, Andrea
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2017, 68 (04) : 1007 - 1036
  • [39] Grey Lotka-Volterra models with application to cryptocurrencies adoption
    Gatabazi, P.
    Mba, J. C.
    Pindza, E.
    Labuschagne, C.
    CHAOS SOLITONS & FRACTALS, 2019, 122 : 47 - 57
  • [40] Analysis of the dynamical behavior of solutions for a class of hybrid generalized Lotka-Volterra models
    Platonov, A. V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119