A unified construction for the algebro-geometric quasiperiodic solutions of the Lotka-Volterra and relativistic Lotka-Volterra hierarchy

被引:3
作者
Zhao, Peng [1 ]
Fan, Engui [2 ,3 ,4 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Fudan Univ, Inst Math, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] Univ Macau, Dept Math, Macau, Peoples R China
基金
美国国家科学基金会;
关键词
TODA LATTICE; DETERMINANT SOLUTION; LAX REPRESENTATION; RECURSION OPERATOR; R-MATRIX; EQUATION; SYSTEMS;
D O I
10.1063/1.4916676
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a new type of integrable differential-difference hierarchy, namely, the generalized relativistic Lotka-Volterra (GRLV) hierarchy, is introduced. This hierarchy is closely related to Lotka-Volterra lattice and relativistic Lotka-Volterra lattice, which allows us to provide a unified and effective way to obtain some exact solutions for both the Lotka-Volterra hierarchy and the relativistic Lotka-Volterra hierarchy. In particular, we shall construct algebro-geometric quasiperiodic solutions for the LV hierarchy and the RLV hierarchy in a unified manner on the basis of the finite gap integration theory. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Competitive Lotka-Volterra population dynamics with jumps
    Bao, Jianhai
    Mao, Xuerong
    Yin, Geroge
    Yuan, Chenggui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6601 - 6616
  • [22] A Stochastic Lotka-Volterra Model with Variable Delay
    Xu, Yong
    Zhu, Song
    Hu, Shigeng
    SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 91 - +
  • [23] Stochastic Lotka-Volterra model with infinite delay
    Wan, Li
    Zhou, Qinghua
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (05) : 698 - 706
  • [24] Stochastic Lotka-Volterra models with multiple delays
    Hu, Yangzi
    Wu, Fuke
    Huang, Chengming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) : 42 - 57
  • [25] Coexistence and Survival in Conservative Lotka-Volterra Networks
    Knebel, Johannes
    Krueger, Torben
    Weber, Markus F.
    Frey, Erwin
    PHYSICAL REVIEW LETTERS, 2013, 110 (16)
  • [26] Opinion dynamics with Lotka-Volterra type interactions
    Aleandri, Michele
    Minelli, Ida G.
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [27] Dynamics of Infinite Dimensional Lotka-Volterra Operators
    Embong, Ahmad Fadillah
    Mukhamedov, Farrukh
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2025,
  • [28] Geometric optimal control of the generalized Lotka-Volterra model of the intestinal microbiome
    Bonnard, Bernard
    Rouot, Jeremy
    Silva, Cristiana J.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (02) : 544 - 574
  • [29] Traveling wave solutions for the diffusive Lotka-Volterra equations with boundary problems
    Tang, Lu
    Chen, Shanpeng
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 413
  • [30] Predicting solutions of the Lotka-Volterra equation using hybrid deep network
    Lin, Zi-Fei
    Liang, Yan-Ming
    Zhao, Jia-Li
    Li, Jiao-Rui
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2022, 12 (06)