A unified construction for the algebro-geometric quasiperiodic solutions of the Lotka-Volterra and relativistic Lotka-Volterra hierarchy

被引:3
作者
Zhao, Peng [1 ]
Fan, Engui [2 ,3 ,4 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Fudan Univ, Inst Math, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] Univ Macau, Dept Math, Macau, Peoples R China
基金
美国国家科学基金会;
关键词
TODA LATTICE; DETERMINANT SOLUTION; LAX REPRESENTATION; RECURSION OPERATOR; R-MATRIX; EQUATION; SYSTEMS;
D O I
10.1063/1.4916676
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a new type of integrable differential-difference hierarchy, namely, the generalized relativistic Lotka-Volterra (GRLV) hierarchy, is introduced. This hierarchy is closely related to Lotka-Volterra lattice and relativistic Lotka-Volterra lattice, which allows us to provide a unified and effective way to obtain some exact solutions for both the Lotka-Volterra hierarchy and the relativistic Lotka-Volterra hierarchy. In particular, we shall construct algebro-geometric quasiperiodic solutions for the LV hierarchy and the RLV hierarchy in a unified manner on the basis of the finite gap integration theory. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:35
相关论文
共 50 条
  • [11] On hybrid competitive Lotka-Volterra ecosystems
    Zhu, C.
    Yin, G.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1370 - E1379
  • [12] On solitary patterns in Lotka-Volterra chains
    Zilburg, Alon
    Rosenau, Philip
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (09)
  • [13] On competitive Lotka-Volterra model in random environments
    Zhu, C.
    Yin, G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 154 - 170
  • [14] Stability of traveling wave solutions for a nonlocal Lotka-Volterra model
    Ma, Xixia
    Liu, Rongsong
    Cai, Liming
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 444 - 473
  • [15] Traveling wave solutions in a Lotka-Volterra type competition recursion
    Pan, Shuxia
    Yang, Pan
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [16] Stability and Monotonicity of Lotka-Volterra Type Operators
    Mukhamedov, Farrukh
    Saburov, Mansoor
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2017, 16 (02) : 249 - 267
  • [17] A NEW CLASS OF INTEGRABLE LOTKA-VOLTERRA SYSTEMS
    Christodoulidi, Helen
    Hone, Andrew N. W.
    Kouloukas, Theodoros E.
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02): : 223 - 237
  • [18] A Lotka-Volterra competition model with seasonal succession
    Hsu, Sze-Bi
    Zhao, Xiao-Qiang
    JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 64 (1-2) : 109 - 130
  • [19] Generalized Lotka-Volterra model with hierarchical interactions
    Poley, Lyle
    Baron, Joseph W.
    Galla, Tobias
    PHYSICAL REVIEW E, 2023, 107 (02)
  • [20] Feasibility of sparse large Lotka-Volterra ecosystems
    Akjouj, Imane
    Najim, Jamal
    JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 85 (6-7)