A unified construction for the algebro-geometric quasiperiodic solutions of the Lotka-Volterra and relativistic Lotka-Volterra hierarchy
被引:3
作者:
Zhao, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R ChinaShanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
Zhao, Peng
[1
]
Fan, Engui
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Inst Math, Sch Math Sci, Shanghai 200433, Peoples R China
Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
Univ Macau, Dept Math, Macau, Peoples R ChinaShanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
Fan, Engui
[2
,3
,4
]
机构:
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Fudan Univ, Inst Math, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
In this paper, a new type of integrable differential-difference hierarchy, namely, the generalized relativistic Lotka-Volterra (GRLV) hierarchy, is introduced. This hierarchy is closely related to Lotka-Volterra lattice and relativistic Lotka-Volterra lattice, which allows us to provide a unified and effective way to obtain some exact solutions for both the Lotka-Volterra hierarchy and the relativistic Lotka-Volterra hierarchy. In particular, we shall construct algebro-geometric quasiperiodic solutions for the LV hierarchy and the RLV hierarchy in a unified manner on the basis of the finite gap integration theory. (C) 2015 AIP Publishing LLC.
机构:
Univ Lille, Lab Paul Painleve, UMR 8524, Ave Paul Langevin,Cite Sci, F-59655 Villeneuve Dascq, FranceUniv Lille, Lab Paul Painleve, UMR 8524, Ave Paul Langevin,Cite Sci, F-59655 Villeneuve Dascq, France
Akjouj, Imane
Najim, Jamal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Marne la Vallee, Lab Informat Gaspard Monge, UMR 8049, CNRS, 5 Blvd Descartes, F-77454 Champs Sur Marne 2, Marne La Vallee, FranceUniv Lille, Lab Paul Painleve, UMR 8524, Ave Paul Langevin,Cite Sci, F-59655 Villeneuve Dascq, France