A unified construction for the algebro-geometric quasiperiodic solutions of the Lotka-Volterra and relativistic Lotka-Volterra hierarchy

被引:3
作者
Zhao, Peng [1 ]
Fan, Engui [2 ,3 ,4 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Fudan Univ, Inst Math, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] Univ Macau, Dept Math, Macau, Peoples R China
基金
美国国家科学基金会;
关键词
TODA LATTICE; DETERMINANT SOLUTION; LAX REPRESENTATION; RECURSION OPERATOR; R-MATRIX; EQUATION; SYSTEMS;
D O I
10.1063/1.4916676
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a new type of integrable differential-difference hierarchy, namely, the generalized relativistic Lotka-Volterra (GRLV) hierarchy, is introduced. This hierarchy is closely related to Lotka-Volterra lattice and relativistic Lotka-Volterra lattice, which allows us to provide a unified and effective way to obtain some exact solutions for both the Lotka-Volterra hierarchy and the relativistic Lotka-Volterra hierarchy. In particular, we shall construct algebro-geometric quasiperiodic solutions for the LV hierarchy and the RLV hierarchy in a unified manner on the basis of the finite gap integration theory. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] On soliton solutions of the relativistic Lotka-Volterra hierarchy
    Zhao, Peng
    Fan, Engui
    Temuerchaolu
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 139 - 149
  • [2] Entire solutions of diffusive Lotka-Volterra system
    Lam, King-Yeung
    Salako, Rachidi B.
    Wu, Qiliang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) : 10758 - 10791
  • [3] Integrable Lotka-Volterra systems
    Bogoyavlenskij, O. I.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (06) : 543 - 556
  • [4] Integrable Lotka-Volterra systems
    O. I. Bogoyavlenskij
    Regular and Chaotic Dynamics, 2008, 13 : 543 - 556
  • [5] Stochastic Lotka-Volterra food chains
    Hening, Alexandru
    Nguyen, Dang H.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 77 (01) : 135 - 163
  • [6] Periodic Solutions for the Degenerate Lotka-Volterra Competition System
    Huang, Haochuan
    Huang, Rui
    Wang, Liangwei
    Yin, Jingxue
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
  • [7] Dynamics of a discrete Lotka-Volterra model
    Din, Qamar
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [8] Lotka-Volterra Competition Model on Graphs
    Slavik, Antonin
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (02): : 725 - 762
  • [9] Permanence of Stochastic Lotka-Volterra Systems
    Liu, Meng
    Fan, Meng
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (02) : 425 - 452
  • [10] Painleve Analysis of Lotka-Volterra Equations
    Damianou, Pantelis A.
    PAINLEVE EQUATIONS AND RELATED TOPICS (2012), 2012, : 161 - 164