INVARIANT MEASURES OF STOCHASTIC 2D NAVIER-STOKES EQUATIONS DRIVEN BY α-STABLE PROCESSES

被引:25
作者
Dong, Zhao [2 ]
Xu, Lihu [3 ]
Zhang, Xicheng [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Acad Sinica, Acad Math & Syst Sci, Inst Appl Math, Guangzhou, Peoples R China
[3] Brunel Univ, Dept Math, Uxbridge UB8 3PH, Middx, England
关键词
alpha-stable process; Stochastic Navier-Stokes equation; Invariant measure; ERGODICITY;
D O I
10.1214/ECP.v16-1664
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note we prove the well-posedness for stochastic 2D Navier-Stokes equation driven by general Levy processes (in particular, alpha-stable processes), and obtain the existence of invariant measures.
引用
收藏
页码:678 / 688
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1999, CAMBRIDGE STUD ADV M
[2]  
[Anonymous], 1986, WILEY SERIES PROBABI
[3]  
Applebaum D., 2004, CAMBRIDGE STUDIES AD, V93
[4]   Ergodicity for the 3D stochastic Navier-Stokes equations [J].
Da Prato, G ;
Debussche, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (08) :877-947
[5]  
DAVIDALDOUS, 1989, ANN PROBAB, V17, P586
[6]   Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise [J].
Debussche, A ;
Odasso, C .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (02) :305-324
[7]   Martingale solutions and Markov selection of stochastic 3D Navier-Stokes equations with jump [J].
Dong, Zhao ;
Zhai, Jianliang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (06) :2737-2778
[8]   Markov selections and their regularity for the three-dimensional stochastic Navier-Stokes equations [J].
Flandoli, Franco ;
Romito, Marco .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (01) :47-50
[9]   Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing [J].
Hairer, Martin ;
Mattingly, Jonathan C. .
ANNALS OF MATHEMATICS, 2006, 164 (03) :993-1032
[10]  
JAKUBOWSKI A, 1986, ANN I H POINCARE-PR, V22, P263