Positive Solutions of a Fractional Thermostat Model with a Parameter

被引:14
作者
Hao, Xinan [1 ]
Zhang, Luyao [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 01期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
positive solution; fractional thermostat model; fixed point index; dependence on a parameter; HAMMERSTEIN INTEGRAL-EQUATIONS; BOUNDARY-VALUE-PROBLEMS; NONTRIVIAL SOLUTIONS; EXISTENCE;
D O I
10.3390/sym11010122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the existence, multiplicity, and uniqueness results of positive solutions for a fractional thermostat model. Our approach depends on the fixed point index theory, iterative method, and nonsymmetry property of the Green function. The properties of positive solutions depending on a parameter are also discussed.
引用
收藏
页数:9
相关论文
共 32 条
[1]  
[Anonymous], 2000, Differential Integral Equations
[2]  
Cabada A, 2016, TOPOL METHOD NONL AN, V47, P265
[3]  
Cabada A, 2014, DYNAM SYST APPL, V23, P715
[4]   Lyapunov type inequalities for a fractional thermostat model [J].
Cabrera, I. J. ;
Rocha, J. ;
Sadarangani, K. B. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (01) :17-24
[5]   Analysis of thermostat models [J].
Cahlon, B ;
Schmidt, D ;
Shillor, M ;
Zou, X .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1997, 8 :437-455
[6]   Nontrivial solutions of boundary value problems for second-order functional differential equations [J].
Calamai, Alessandro ;
Infante, Gennaro .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) :741-756
[7]   Solutions of perturbed Hammerstein integral equations with applications [J].
Cianciaruso, Filomena ;
Infante, Gennaro ;
Pietramala, Paolamaria .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 33 :317-347
[8]   Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem [J].
Graef, John R. ;
Kong, Lingju ;
Wang, Haiyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (05) :1185-1197
[9]  
Guo D., 1988, Nonlinear problems in abstract cones
[10]   Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval [J].
Hao, Xinan ;
Sun, Hui ;
Liu, Lishan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6984-6996