In-medium effect on the thermodynamics and transport coefficients in the van der Waals hadron resonance gas

被引:2
作者
Zhang, He-Xia [1 ,2 ]
Kang, Jin-Wen [1 ,2 ]
Zhang, Ben-Wei [1 ,2 ,3 ]
机构
[1] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China
[3] South China Normal Univ, Inst Quantum Matter, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
EQUATION-OF-STATE; SHEAR VISCOSITY; QCD; HOT;
D O I
10.1103/PhysRevD.101.114033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An extension of the van der Waals hadron resonance gas (VDWHRG) model which includes the inmedium thermal modification of hadron masses, the thermal VDWHRG (TVDWHRG) model, is considered in this paper. Based on the 2 + 1 flavor Polyakov linear sigma model (PLSM) and the scaling mass rule of hadrons, we obtain the temperature behavior of all hadron masses for different fixed baryon chemical potentials mu(B). We calculate various thermodynamic observables at mu(B )= 0 GeV in the TVDWHRG model. An improved agreement with the lattice data from the TVDWHRG model in the crossover region (T similar to 0.16-0.19 GeV) is observed as compared to those from the VDWHRG and ideal HRG (IHRG) models. We further discuss the effects of the in-medium modification of hadron masses and VDW interactions between (anti)baryons on the dimensionless transport coefficients, such as the shear viscosity to entropy density ratio (eta/s) and scaled thermal (lambda/T-2) and electrical (sigma(el)/T) conductivities in the IHRG model at different mu(B) by utilizing quasiparticle kinetic theory with relaxation time approximation. We find in contrast to the IHRG model, the TVDWHRG model leads to a qualitatively and quantitatively different behavior of transport coefficients with T and mu(B).
引用
收藏
页数:18
相关论文
共 97 条
[1]   Electrical conductivity and charge diffusion in thermal QCD from the lattice [J].
Aarts, Gert ;
Alton, Chris ;
Amato, Alessandro ;
Giudice, Pietro ;
Hands, Simon ;
Shuiierd, Jon-Ivar .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02)
[2]   Transport coefficients in the Polyakov quark meson coupling model: A relaxation time approximation [J].
Abhishek, Aman ;
Mishra, Hiranmaya ;
Ghosh, Sabyasachi .
PHYSICAL REVIEW D, 2018, 97 (01)
[3]   Quasiparticle theory of transport coefficients for hadronic matter at finite temperature and baryon density [J].
Albright, M. ;
Kapusta, J. I. .
PHYSICAL REVIEW C, 2016, 93 (01)
[4]   Interacting hadron resonance gas meets lattice QCD [J].
Andronic, A. ;
Braun-Munzinger, P. ;
Stachel, J. ;
Winn, M. .
PHYSICS LETTERS B, 2012, 718 (01) :80-85
[5]  
[Anonymous], 2006, JHEP, DOI [DOI 10.1088/1126-6708/2006/12/015[ARXIV:HEP-TH/0607237[HEP-TH]], DOI 10.1088/1126-6708/2006/12/015]
[6]   The QCD transition temperature:: Results with physical masses in the continuum limit [J].
Aoki, Y. ;
Fodor, Z. ;
Katz, S. D. ;
Szabo, K. K. .
PHYSICS LETTERS B, 2006, 643 (01) :46-54
[7]  
Baran A, 2004, ACTA PHYS POL B, V35, P779
[8]  
Bazavov, 2014, PHYS REV D, V90
[9]   Chiral and deconfinement aspects of the QCD transition [J].
Bazavov, A. ;
Bhattacharya, T. ;
Cheng, M. ;
DeTar, C. ;
Ding, H-T. ;
Gottlieb, Steven ;
Gupta, R. ;
Hegde, P. ;
Heller, U. M. ;
Karsch, F. ;
Laermann, E. ;
Levkova, L. ;
Mukherjee, S. ;
Petreczky, P. ;
Schmidt, C. ;
Soltz, R. A. ;
Soeldner, W. ;
Sugar, R. ;
Toussaint, D. ;
Unger, W. ;
Vranas, P. .
PHYSICAL REVIEW D, 2012, 85 (05)
[10]   The QCD phase diagram from analytic continuation [J].
Bellwied, R. ;
Borsanyi, S. ;
Fodor, Z. ;
Guenther, J. ;
Katz, S. D. ;
Ratti, C. ;
Szabo, K. K. .
PHYSICS LETTERS B, 2015, 751 :559-564