Fixed Points for Multivalued Suzuki Type (,R)-Contraction Mapping with Applications

被引:22
作者
Abbas, Mujahid [1 ,2 ]
Iqbal, Hira [3 ]
Petrusel, Adrian [4 ,5 ]
机构
[1] Govt Coll Univ, Dept Math, Katchery Rd, Lahore 54000, Pakistan
[2] Univ Pretoria, Dept Math & Appl Math, ZA-002 Pretoria, South Africa
[3] Natl Univ Comp & Emerging Sci, Dept Sci & Humanities, Lahore Campus, Lahore, Pakistan
[4] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
[5] Acad Romanian Scientists, Bucharest, Romania
关键词
PARTIALLY ORDERED SETS; THEOREMS;
D O I
10.1155/2019/9565804
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will introduce the concept of Suzuki type multivalued (,R)-contraction and we will prove some fixed point results in the setting of a metric space equipped with a binary relation. Our results generalize and extend various comparable results in the existing literature. Examples are provided to support the results proved here. As an application of our results, we obtain a homotopy result, proving the existence of a solution for a second-order differential equation and for a first-order fractional differential equation.
引用
收藏
页数:13
相关论文
共 22 条
[1]   Relation-theoretic contraction principle [J].
Alam, Aftab ;
Imdad, Mohammad .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2015, 17 (04) :693-702
[2]   Fixed point results of Edelstein-Suzuki type multivalued mappings on b-metric spaces with applications [J].
Alolaiyan, Hanan Abdulaziz ;
Ali, Basit ;
Abbas, Mujahid .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03) :1201-1214
[3]  
[Anonymous], 2001, CAMBRIDGE TRACTS MAT
[4]  
CHATTERJEA SK, 1972, DOKL BOLG AKAD NAUK, V25, P727
[5]  
Ciri L.B., 1971, PUBL I MATH-BEOGRAD, V12, P19
[6]  
Dobrican M. I., 2018, THESIS
[7]   Some theorems for a new type of multivalued contractive maps on metric space [J].
Durmaz, Gonca .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (04) :1092-1100
[8]  
Durmaz G, 2017, PUBL I MATH-BEOGRAD, V101, P197, DOI 10.2298/PIM1715197D
[9]   ON A BROAD CATEGORY OF MULTIVALUED WEAKLY PICARD OPERATORS [J].
Hancer, Hatice Aslan ;
Minak, Gulhan ;
Altun, Ishak .
FIXED POINT THEORY, 2017, 18 (01) :229-236
[10]   Some fixed point theorems for generalized contractive mappings in complete metric spaces [J].
Hussain, Nawab ;
Parvaneh, Vahid ;
Samet, Bessem ;
Vetro, Calogero .
FIXED POINT THEORY AND APPLICATIONS, 2015,