Effect of Water Activity on Reaction Kinetics and Intergranular Transport: Insights from the Ca(OH)2 + MgCO3 → CaCO3 + Mg(OH)2 Reaction at 1.8 GPa

被引:3
作者
Gasc, Julien [1 ,7 ]
Brunet, Fabrice [2 ]
Brantut, Nicolas [3 ]
Corvisier, Jerome [4 ]
Findling, Nathaniel [2 ]
Verlaguet, Anne [5 ]
Lathe, Christian [6 ]
机构
[1] Ecole Normale Super, CNRS UMR8538, Geol Lab, Paris, France
[2] Univ Grenoble Alpes, CNRS, ISTERRE, Grenoble, France
[3] UCL, Dept Earth Sci, London WC1E 6BT, England
[4] Mines ParisTech, Ctr Geosci, Fontainebleau, France
[5] Univ Paris 06, ISTeP, 4 Pl Jussieu, Paris, France
[6] GFZ, D-14473 Potsdam, Germany
[7] Univ Montpellier, CNRS, Geosci Montpellier, Montpellier, France
关键词
metamorphic reaction; kinetics; intergranular transport; water; calcium diffusion; GRAIN-BOUNDARY DIFFUSION; THERMODYNAMIC MODEL; FLUID COMPOSITION; HIGH-PRESSURE; RIM GROWTH; METAMORPHISM; CALCITE; CALIBRATION; SYSTEM; OXYGEN;
D O I
10.1093/petrology/egw044
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The kinetics of the irreversible reaction Ca(OH)(2)+MgCO3 -> CaCO3+Mg(OH)(2) were investigated at high pressures and temperatures relevant to metamorphic petrology, using both in situ synchrotron X-ray diffraction and post-mortem analysis of reaction rim growth on recovered samples. Reaction kinetics are found to strongly depend on water content; comparable bulk-reaction kinetics are obtained under water-saturated (excess water, c. 10 wt %) and under intermediate (0.1-1wt % water) conditions when temperature is increased by c. 300 K. In contrast, similar reaction kinetics were observed at similar to 673 K and 823 K between intermediate and dry experiments, respectively, where dry refers to a set of experiments with water activity below 1.0 (no free water), as buffered by the CaO-Ca(OH)(2) assemblage. Given the activation energies at play, this gap-corresponding to the loss of no more than 1 wt % of water by the assemblage-leads to a difference of several orders of magnitude in reaction kinetics at a given temperature. Further analysis, at the microscopic scale, of the intermediate and dry condition samples, shows that intergranular transport of calcium controls the reaction progress. Grain boundary diffusivities could be retrieved from the classic treatment of reaction rim growth rate. In turn, once modeled, this rate was used to fit the bulk kinetic data derived from X-ray powder diffraction, offering an alternative means to derive calcium diffusivity data. Based on a comparison with effective grain boundary data for Ca and Mg from the literature, it is inferred that both dry and intermediate datasets are consistent with a water-saturated intergranular medium with different levels of connectivity. The very high diffusivity of Ca in the CaCO3+Mg(OH)(2) rims, in comparison with that of Mg in enstatite rims found by earlier workers, emphasizes the prominent role of the interactions between diffusing species and mineral surfaces in diffusion kinetics. Furthermore, we show that the addition of water is likely to change the relative diffusivity of Mg and Ca in carbonate aggregates. From a qualitative point of view, we confirm, in a carbonate-bearing system, that small water content variations within the 0-1wt % range have tremendous effects on both intergranular transport mechanisms and kinetics. We also propose that the water content dependent diffusivity of major species (Mg, Ca) in low-porosity metamorphic rocks is strongly dependent on the interaction between diffusing species and mineral surfaces. This parameter, which will vary from one rock-type to another, needs also to considered when extrapolating (P, T, t, xH(2)O) laboratory diffusion data to metamorphic processes.
引用
收藏
页码:1389 / 1407
页数:19
相关论文
共 50 条
[1]   THERMODYNAMIC MODEL FOR DIFFUSION CONTROLLED REACTION RIM GROWTH IN A BINARY SYSTEM: APPLICATION TO THE FORSTERITE-ENSTATITE-QUARTZ SYSTEM [J].
Abart, R. ;
Petrishcheva, E. ;
Fischer, F. D. ;
Svoboda, J. .
AMERICAN JOURNAL OF SCIENCE, 2009, 309 (02) :114-131
[2]   Statistical models of brittle fragmentation [J].
Äström, JA .
ADVANCES IN PHYSICS, 2006, 55 (3-4) :247-278
[4]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[5]   Natural constraints on metamorphic reaction rates [J].
Baxter, EF .
GEOCHRONOLOGY: LINKING THE ISOTOPIC RECORD WITH PETROLOGY AND TEXTURES, 2003, 220 :183-202
[6]   Optimized standard state and solution properties of minerals .1. Model calibration for olivine, orthpyroxene, cordierite, garnet, ilmenite in the system FEO-MGO-CaO-Al2O3-TiO3-SiO2 [J].
Berman, RG ;
Aranovich, LY .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1996, 126 (1-2) :1-24
[7]  
BONS AJ, 1990, PHYS CHEM MINER, V17, P402
[8]  
Brady J. B., 1983, AM J SCI, V283, P19
[9]   DIFFUSION OF CHLORINE IN FLUID-BEARING QUARTZITE - EFFECTS OF FLUID COMPOSITION AND TOTAL POROSITY [J].
BRENAN, JM .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1993, 115 (02) :215-224
[10]   ARAGONITE IN CALIFORNIA GLAUCOPHANE SCHISTS, AND THE KINETICS OF THE ARAGONITE-CALCITE TRANSFORMATION [J].
BROWN, WH ;
FYFE, WS ;
TURNER, FJ .
JOURNAL OF PETROLOGY, 1962, 3 (03) :566-&