Synthesis and characterization of block copolymers of styrene-maleic acid with acrylamide and N,N-dimethylacrylamide

被引:5
|
作者
Khaojanta, Thidarat [1 ]
Kalaithong, Wichaya [1 ]
Somsunan, Runglawan [1 ]
Punyamoonwongsa, Patchara [2 ]
Mahomed, Anisa [3 ]
Topham, Paul D. [3 ]
Tighe, Brian J. [3 ]
Molloy, Robert [1 ,4 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Chem, Polymer Res Grp, Chiang Mai, Thailand
[2] Mae Fah Luang Univ, Sch Sci, Chiangrai, Thailand
[3] Aston Univ, Aston Inst Mat Res, Birmingham, W Midlands, England
[4] Chiang Mai Univ, Fac Sci, Mat Sci Res Ctr, Chiang Mai 50200, Thailand
来源
POLYMER ENGINEERING AND SCIENCE | 2022年 / 62卷 / 06期
关键词
acrylamide; block copolymers; membrane protein solubilization; N; N-dimethylacrylamide; styrene-maleic acid; styrene-maleic anhydride; MEMBRANE-PROTEINS; SMA; POLYMERS;
D O I
10.1002/pen.25986
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Styrene-maleic acid (SMA) block copolymers with either acrylamide (AM) or N,N-dimethylacrylamide (DMA) have been synthesized via a 3-step process comprising: (1) photopolymerization of styrene and maleic anhydride in solution to yield an alternating styrene maleic anhydride (SMAnh) copolymer, (2) copolymerization of SMAnh with either AM or DMA to yield SMAnh-b-AM and SMAnh-b-DMA block copolymers and (3) hydrolysis of the anhydride groups to yield water-soluble SMA-b-AM and SMA-b-DMA block copolymers as the final products. With a view to their intended application in membrane protein solubilization, molecular weights are controlled to below 10,000 by the synthesis conditions employed in step (1), including using carbon tetrabromide (CBr4) as a chain transfer agent. The CBr4 also plays an important role in step (2). By terminating the SMAnh chain radicals from step (1) with C-Br bonds that are photolytically active, SMAnh chain radicals can be regenerated to act as macroinitiators for the polymerization of AM or DMA in step (2). Finally, following step (3) and due to the pH-dependency of the SMA chain conformation in solution, a pH of 7-8 is found to be optimal for enabling the final products to be precipitated in a solid form that is completely soluble in water.
引用
收藏
页码:2031 / 2046
页数:16
相关论文
共 50 条