Group laws and free subgroups in topological groups

被引:34
作者
Abért, M [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会; 匈牙利科学研究基金会;
关键词
D O I
10.1112/S002460930500425X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proof is given that a permutation group in which different finite sets have different stabilizers cannot satisfy any group law. For locally compact topological groups with this property, almost all finite subsets of the group are shown to generate free subgroups. Consequences of these theorems are derived for: Thompson's group F, weakly branch groups, automorphism groups of regular trees, and profinite groups with alternating composition factors of unbounded degree.
引用
收藏
页码:525 / 534
页数:10
相关论文
共 18 条
[1]  
ABERT M, GENERIC SUBGROUPS AU
[2]  
BARTHOLDI L, AMENABILITY VIA RAND
[3]   THE UBIQUITY OF FREE SUBGROUPS IN CERTAIN INVERSE LIMITS OF GROUPS [J].
BHATTACHARJEE, M .
JOURNAL OF ALGEBRA, 1995, 172 (01) :134-146
[4]   Maximal subgroups in finite and profinite groups [J].
Borovik, AV ;
Pyber, L ;
Shalev, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (09) :3745-3761
[5]   GROUPS OF PIECEWISE LINEAR HOMEOMORPHISMS OF THE REAL LINE [J].
BRIN, MG ;
SQUIER, CC .
INVENTIONES MATHEMATICAE, 1985, 79 (03) :485-498
[6]  
Dixon JD, 2003, J REINE ANGEW MATH, V556, P159
[7]  
Grigorchuk R. I., 2000, PROG MATH, V184, P121
[8]   On a torsion-free weakly branch group defined by a three state automaton [J].
Grigorchuk, RI ;
Zuk, A .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2002, 12 (1-2) :223-246
[9]  
LEONOV Y, 1997, VIISN KIIV U FMN, P37
[10]   Simple groups, maximal subgroups, and probabilistic aspects of profinite groups [J].
Mann, A ;
Shalev, A .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 96 :449-468