On weighted total least-squares adjustment for linear regression

被引:432
作者
Schaffrin, Burkhard [1 ]
Wieser, Andreas [2 ]
机构
[1] Ohio State Univ, Geodet Sci Program, Columbus, OH 43210 USA
[2] Graz Univ Technol, A-8010 Graz, Austria
关键词
total least-squares solution (TLSS); errors-in-variables model; weight matrix; heteroscedastic observations; straight-line fit; multiple linear regression;
D O I
10.1007/s00190-007-0190-9
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The weighted total least-squares solution (WTLSS) is presented for an errors-in-variables model with fairly general variance-covariance matrices. In particular, the observations can be heteroscedastic and correlated, but the variance-covariance matrix of the dependent variables needs to have a certain block structure. An algorithm for the computation of the WTLSS is presented and applied to a straight-line fit problem where the data have been observed with different precision, and to a multiple regression problem from recently published climate change research.
引用
收藏
页码:415 / 421
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 1972, P 38 ANN M AM SOC PH
[2]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[3]   AN ANALYSIS OF THE TOTAL LEAST-SQUARES PROBLEM [J].
GOLUB, GH ;
VANLOAN, CF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (06) :883-893
[4]  
GRAFAREND EW, 1993, ADJUSTMENT COMPUTATI
[5]  
Magnus J. R., 1988, WILEY SERIES PROBABI
[6]  
Mann M., 2006, Eos, V87, P233, DOI DOI 10.1029/2006EO240001
[7]  
Markovsky I, 2006, COMPUT STAT DATA AN, V50, P181, DOI 10.1016/j.csda.2004.07.014
[8]   AN ACCURATE AND STRAIGHTFORWARD APPROACH TO LINE REGRESSION-ANALYSIS OF ERROR-AFFECTED EXPERIMENTAL-DATA [J].
NERI, F ;
SAITTA, G ;
CHIOFALO, S .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1989, 22 (04) :215-217
[9]  
Schaffrin B., 2006, Boll Geod Sc Aff, VLXV, P141
[10]  
SCHAFFRIN B, 2007, P 6 HOT MAR IN PRESS