A meta-learning method to select the kernel width in Support Vector Regression

被引:119
作者
Soares, C [1 ]
Brazdil, PB
Kuba, P
机构
[1] Univ Porto, Fac Econ, LIACC, Oporto, Portugal
[2] Masaryk Univ, Brno, Czech Republic
关键词
meta-learning; parameter setting; support vector machines; Gaussian kernel; learning rankings;
D O I
10.1023/B:MACH.0000015879.28004.9b
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Support Vector Machine algorithm is sensitive to the choice of parameter settings. If these are not set correctly, the algorithm may have a substandard performance. Suggesting a good setting is thus an important problem. We propose a meta-learning methodology for this purpose and exploit information about the past performance of different settings. The methodology is applied to set the width of the Gaussian kernel. We carry out an extensive empirical evaluation, including comparisons with other methods (fixed default ranking; selection based on cross-validation and a heuristic method commonly used to set the width of the SVM kernel). We show that our methodology can select settings with low error while providing significant savings in time. Further work should be carried out to see how the methodology could be adapted to different parameter setting tasks.
引用
收藏
页码:195 / 209
页数:15
相关论文
共 19 条
[1]   Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results [J].
Brazdil, PB ;
Soares, C ;
Da Costa, JP .
MACHINE LEARNING, 2003, 50 (03) :251-277
[2]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[3]   Choosing multiple parameters for support vector machines [J].
Chapelle, O ;
Vapnik, V ;
Bousquet, O ;
Mukherjee, S .
MACHINE LEARNING, 2002, 46 (1-3) :131-159
[4]   SVMTorch: Support vector machines for large-scale regression problems [J].
Collobert, R ;
Bengio, S .
JOURNAL OF MACHINE LEARNING RESEARCH, 2001, 1 (02) :143-160
[5]  
Cristianini N, 1999, ADV NEUR IN, V11, P204
[6]  
Cristianini N., 2000, Intelligent Data Analysis: An Introduction, DOI 10.1017/CBO9780511801389
[7]  
Ihaka R., 1996, J COMPUTATIONAL GRAP, V5, P299, DOI [10.1080/10618600.1996.10474713, 10.2307/1390807, DOI 10.1080/10618600.1996.10474713]
[8]  
Jaakkola T, 1999, Proc Int Conf Intell Syst Mol Biol, P149
[9]  
Jarvelin K, 2000, P 23 ANN INT ACM SIG, P41, DOI DOI 10.1145/345508.345545
[10]  
Karypis G., 2001, Proceedings of the 2001 ACM CIKM. Tenth International Conference on Information and Knowledge Management, P247, DOI 10.1145/502585.502627