SPECTRA OF THE GURTIN-PIPKIN TYPE EQUATIONS

被引:32
作者
Eremenko, Alexandre [1 ]
Ivanov, Sergei [2 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] State Marine Tech Univ, St Petersburg, Russia
基金
美国国家科学基金会;
关键词
Gurtin-Pipkin equation; spectrum; Denjoy-Wolff theorem; CONTROLLABILITY;
D O I
10.1137/100811908
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the spectra of certain linear integro-differential equations in one dimension arising in applications. Under some conditions on the kernel of the integral operator, we describe the nonreal part of the spectrum. The main tool is the theory of analytic functions mapping the upper half-plane into itself.
引用
收藏
页码:2296 / 2306
页数:11
相关论文
共 15 条
[1]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[2]  
Evgrafov M.A., 1972, COLLECTION PROBLEMS
[3]  
Gantmakher FR., 1998, The Theory of Matrices
[4]   A GENERAL THEORY OF HEAT CONDUCTION WITH FINITE WAVE SPEEDS [J].
GURTIN, ME ;
PIPKIN, AC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1968, 31 (02) :113-&
[5]   Heat equation with memory: Lack of controllability to rest [J].
Ivanov, S. ;
Pandolfi, L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (01) :1-11
[6]  
IVANOV SA, ARXIVARXIVORGABS1002
[7]  
IVANOV SA, ARXIVARXIVORGABS0912
[8]   The controllability of the Gurtin-Pipkin equation: A cosine operator approach [J].
Pandolfi, L .
APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 52 (02) :143-165
[9]  
Pruss J., 1993, EVOLUTIONARY INTEGRA, DOI 10.1007/978-3-0348-8570-6
[10]  
Shapiro J. H., 1993, Composition Operators and Classical Function Theory