Fabrication and characterization of three-dimensional metallodielectric photonic crystals for infrared spectral region

被引:6
作者
Dyachenko, P. N. [1 ]
Karpeev, S. V.
Pavelyev, V. S.
机构
[1] Image Proc Syst Inst RAS, Samara 443001, Russia
关键词
Photonic crystals; Interference lithography; Photonic bandgap materials; BAND-EDGE; RANGE; GAP;
D O I
10.1016/j.optcom.2011.07.062
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a technique for the realization of three-dimensional metallodielectric photonic crystals based on fabricating polymeric structures using the interference lithography followed by the magnetron deposition of a gold nanolayer. The infrared reflectance spectra of the fabricated photonic crystals are studied. The spectrometry and finite-difference time-domain modeling data show that there is a photonic band gap centered at the wavelength approximately equal to the photonic crystal period. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:5381 / 5383
页数:3
相关论文
共 31 条
[1]   All optical switch based on Fano resonance in metal nanocomposite photonic crystals [J].
Asadi, Reza ;
Malek-Mohammad, Mohammad ;
Khorasani, Sina .
OPTICS COMMUNICATIONS, 2011, 284 (08) :2230-2235
[2]   Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J].
Blanco, A ;
Chomski, E ;
Grabtchak, S ;
Ibisate, M ;
John, S ;
Leonard, SW ;
Lopez, C ;
Meseguer, F ;
Miguez, H ;
Mondia, JP ;
Ozin, GA ;
Toader, O ;
van Driel, HM .
NATURE, 2000, 405 (6785) :437-440
[3]   Photonic band gap in the visible range in a three-dimensional solid state lattice [J].
Bogomolov, VN ;
Gaponenko, SV ;
Kapitonov, AM ;
Prokofiev, AV ;
Ponyavina, AN ;
Silvanovich, NI ;
Samoilovich, SM .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1996, 63 (06) :613-616
[4]   Highly directional enhanced radiation from sources embedded inside three-dimensional photonic crystals [J].
Caglayan, H ;
Bulu, I ;
Ozbay, E .
OPTICS EXPRESS, 2005, 13 (19) :7645-7652
[5]   Fabrication of photonic crystals for the visible spectrum by holographic lithography [J].
Campbell, M ;
Sharp, DN ;
Harrison, MT ;
Denning, RG ;
Turberfield, AJ .
NATURE, 2000, 404 (6773) :53-56
[6]   Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon [J].
Chelnokov, A ;
Wang, K ;
Rowson, S ;
Garoche, P ;
Lourtioz, JM .
APPLIED PHYSICS LETTERS, 2000, 77 (19) :2943-2945
[7]   Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity [J].
Chow, E ;
Grot, A ;
Mirkarimi, LW ;
Sigalas, M ;
Girolami, G .
OPTICS LETTERS, 2004, 29 (10) :1093-1095
[8]   Direct laser writing of three-dimensional photonic-crystal templates for telecommunications [J].
Deubel, M ;
Von Freymann, G ;
Wegener, M ;
Pereira, S ;
Busch, K ;
Soukoulis, CM .
NATURE MATERIALS, 2004, 3 (07) :444-447
[9]   The three-dimensional photonic crystals coated by gold nanoparticles [J].
Dyachenko, P. N. ;
Karpeev, S. V. ;
Fesik, E. V. ;
Miklyaev, Yu V. ;
Pavelyev, V. S. ;
Malchikov, G. D. .
OPTICS COMMUNICATIONS, 2011, 284 (03) :885-888
[10]   All-metallic three-dimensional photonic crystals with a large infrared bandgap [J].
Fleming, JG ;
Lin, SY ;
El-Kady, I ;
Biswas, R ;
Ho, KM .
NATURE, 2002, 417 (6884) :52-55