Stability Analysis for Viral Infection Model with Multitarget Cells, Beddington-DeAngelis Functional Response, and Humoral Immunity
被引:2
作者:
Tian, Xinxin
论文数: 0引用数: 0
h-index: 0
机构:
Heilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R ChinaHeilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R China
Tian, Xinxin
[1
]
Wang, Jinliang
论文数: 0引用数: 0
h-index: 0
机构:
Heilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R China
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R ChinaHeilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R China
Wang, Jinliang
[1
,2
]
机构:
[1] Heilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R China
[2] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
We formulate a (2n + 2)-dimensional viral infection model with humoral immunity, n classes of uninfected target cells and n classes of infected cells. The incidence rate of infection is given by nonlinear incidence rate, Beddington-DeAngelis functional response. The model admits discrete time delays describing the time needed for infection of uninfected target cells and virus replication. By constructing suitable Lyapunov functionals, we establish that the global dynamics are determined by two sharp threshold parameters: R-0 and R-1. Namely, a typical two-threshold scenario is shown. If R-0 <= 1, the infection-free equilibrium P-0 is globally asymptotically stable, and the viruses are cleared. If R-1 <= 1 < R-0, the immune-free equilibrium P-1 is globally asymptotically stable, and the infection becomes chronic but with no persistent antibody immune response. If R-1 > 1, the endemic equilibrium P-2 is globally asymptotically stable, and the infection is chronic with persistent antibody immune response.
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Al Azhar Univ, Fac Sci, Dept Math, Assiut, EgyptKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Elaiw, A. M.
;
Azoz, S. A.
论文数: 0引用数: 0
h-index: 0
机构:
Assiut Univ, Fac Sci, Dept Math, Assiut, EgyptKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Al Azhar Univ, Fac Sci, Dept Math, Assiut Branch, Assiut, EgyptKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Al Azhar Univ, Fac Sci, Dept Math, Assiut, EgyptKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Elaiw, A. M.
;
Alghamdi, M. A.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi ArabiaKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Al Azhar Univ, Fac Sci, Dept Math, Assiut, EgyptKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Elaiw, A. M.
;
Azoz, S. A.
论文数: 0引用数: 0
h-index: 0
机构:
Assiut Univ, Fac Sci, Dept Math, Assiut, EgyptKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Al Azhar Univ, Fac Sci, Dept Math, Assiut Branch, Assiut, EgyptKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Al Azhar Univ, Fac Sci, Dept Math, Assiut, EgyptKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
Elaiw, A. M.
;
Alghamdi, M. A.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi ArabiaKing Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia