Local smoothing estimates for the massless Dirac-Coulomb equation in 2 and 3 dimensions

被引:20
作者
Cacciafesta, Federico [1 ]
Sere, Eric [2 ]
机构
[1] SAPIENZA Univ Roma, Dipartimento Matemat, Piazzale A Moro 2, I-00185 Rome, Italy
[2] Univ Paris 09, PSL Res Univ, CNRS, CEREMADE,UMR 7534, Pl Lattre de Tassigny, F-75775 Paris 16, France
关键词
Dispersive PDEs; Dirac equation; Smoothing estimates; SELF-ADJOINT EXTENSIONS; SMALL INITIAL DATA; SCHRODINGER-EQUATIONS; STRICHARTZ; POTENTIALS; OPERATORS; WAVE; DECAY;
D O I
10.1016/j.jfa.2016.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove local smoothing estimates for the massless Dirac equation with a Coulomb potential in 2 and 3 dimensions. Our strategy is inspired by [9] and relies on partial wave subspaces decomposition and spectral analysis of the Dirac-Coulomb operator. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2339 / 2358
页数:20
相关论文
共 39 条
[1]  
[Anonymous], 1966, GEN HYPERGEOMETRIC F
[2]  
[Anonymous], 1992, TEXTS MONOGR PHYS
[3]  
Appel P., 1925, MEMOIR SCI MATH PARI
[4]   Self-adjoint extensions of Dirac operators with Coulomb type singularity [J].
Arrizabalaga, Naiara ;
Duoandikoetxea, Javier ;
Vega, Luis .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (04)
[5]   On the lack of dispersion for a class of magnetic Dirac flows [J].
Arrizabalaga, Naiara ;
Fanelli, Luca ;
Garcia, Andoni .
JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (01) :89-106
[6]  
Bejenaru I, 2016, COMMUN MATH PHYS, V343, P515, DOI 10.1007/s00220-015-2508-4
[7]  
Bejenaru I, 2015, COMMUN MATH PHYS, V335, P43, DOI 10.1007/s00220-014-2164-0
[8]  
Biedenharn L. C., 1964, J MATH PHYS, V5, P411
[9]   Stable directions for small nonlinear Dirac standing waves [J].
Boussaid, Nabile .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (03) :757-817
[10]   Virial identity and weak dispersion for the magnetic Dirac equation [J].
Boussaid, Nabile ;
D'Ancona, Piero ;
Fanelli, Luca .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (02) :137-150