ON MODULES OVER COMMUTATIVE RINGS

被引:7
作者
Fuchs, Laszlo [1 ]
Lee, Sang Bum [2 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[2] Sangmyung Univ, Dept Math, Seoul 110743, South Korea
关键词
Commutative rings; torsion-free; torsion; divisible and h-divisible modules; cotorsion modules; generalized Matlis category equivalence; tight sustem; Mytlis rings; DIVISIBLE MODULES; COTORSION PAIRS;
D O I
10.1017/S1446788717000313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main purpose is to extend several results of interest that have been proved for modules over integral domains to modules over arbitrary commutative rings R with identity. The classical ring of quotients Q of R will play the role of the field of quotients when zero-divisors are present. After discussing torsion-freeness and divisibility (Sections 2-3), we study Matlis-cotorsion modules and their roles in two category equivalences (Sections 4-5). These equivalences are established via the same functors as in the domain case, but instead of injective direct sums EDQ one has to take the full subcategory of Q-modules into consideration. Finally, we prove results on Matlis rings, i.e. on rings for which Q has projective dimension 1 (Theorem 6.4).
引用
收藏
页码:341 / 356
页数:16
相关论文
共 20 条
[1]   Divisible modules and localization [J].
Angeleri Hugel, L ;
Herbera, D ;
Trlifaj, J .
JOURNAL OF ALGEBRA, 2005, 294 (02) :519-551
[2]  
Bass H., 1960, T AM MATH SOC, V95, P466, DOI [10.1090/S0002-9947-1960-0157984-8, DOI 10.1090/S0002-9947-1960-0157984-8]
[3]   Tilting cotorsion pairs [J].
Bazzoni, S ;
Eklof, PC ;
Trlifaj, J .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :683-696
[4]   Cotorsion pairs generated by modules of bounded projective dimension [J].
Bazzoni, Silvana ;
Herbera, Dolors .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 174 (01) :119-160
[5]   All modules have flat covers [J].
Bican, L ;
El Bashir, R ;
Enochs, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :385-390
[6]  
Cartan H., 1956, Homological algebra
[7]   TORSION-FREENESS FOR RINGS WITH ZERO-DIVISORS [J].
Dauns, John ;
Fuchs, Laszlo .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2004, 3 (03) :221-237
[8]  
Fuchs L., 2001, Mathematical Surveys and Monographs, V84
[9]  
Fuchs L., 2017, Groups, Modules and Model Theory, P317
[10]   The Functor Hom and Cotorsion Theories [J].
Fuchs, Laszlo ;
Lee, Sang Bum .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (03) :923-932