DDLVis: Real-time Visual Query of Spatiotemporal Data Distribution via Density Dictionary Learning

被引:9
作者
Li, Chenhui [1 ]
Baciu, George [2 ]
Wang, Yunzhe [3 ]
Chen, Junjie [1 ]
Wang, Changbo [1 ]
机构
[1] East China Normal Univ, Sch Comp Sci & Technol, Shanghai, Peoples R China
[2] Hong Kong Polytech Univ, Hong Kong, Peoples R China
[3] Suzhou Univ Sci & Technol, Suzhou, Peoples R China
关键词
Visualization; Spatiotemporal phenomena; Data visualization; Real-time systems; Machine learning; Estimation; Encoding; Visual query; information visualization; spatiotemporal data; data compression; interaction; density map; K-SVD; VISUALIZATION; EXPLORATION; DISPLAY; MAPS;
D O I
10.1109/TVCG.2021.3114762
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Visual query of spatiotemporal data is becoming an increasingly important function in visual analytics applications. Various works have been presented for querying large spatiotemporal data in real time. However, the real-time query of spatiotemporal data distribution is still an open challenge. As spatiotemporal data become larger, methods of aggregation, storage and querying become critical. We propose a new visual query system that creates a low-memory storage component and provides real-time visual interactions of spatiotemporal data. We first present a peak-based kernel density estimation method to produce the data distribution for the spatiotemporal data. Then a novel density dictionary learning approach is proposed to compress temporal density maps and accelerate the query calculation. Moreover, various intuitive query interactions are presented to interactively gain patterns. The experimental results obtained on three datasets demonstrate that the presented system offers an effective query for visual analytics of spatiotemporal data.
引用
收藏
页码:1062 / 1072
页数:11
相关论文
共 59 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 2013, X MAP
[3]   Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data [J].
Bach, Benjamin ;
Shi, Conglei ;
Heulot, Nicolas ;
Madhyastha, Tara ;
Grabowski, Tom ;
Dragicevic, Pierre .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) :559-568
[4]   Generalized Hamming distance [J].
Bookstein, A ;
Kulyukin, VA ;
Raita, T .
INFORMATION RETRIEVAL, 2002, 5 (04) :353-375
[5]   D3: Data-Driven Documents [J].
Bostock, Michael ;
Ogievetsky, Vadim ;
Heer, Jeffrey .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) :2301-2309
[6]   Timelines Revisited: A Design Space and Considerations for Expressive Storytelling [J].
Brehmer, Matthew ;
Lee, Bongshin ;
Bach, Benjamin ;
Riche, Nathalie Henry ;
Munzner, Tamara .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (09) :2151-2164
[7]   Compression of facial images using the K-SVD algorithm [J].
Bryt, Ori ;
Elad, Michael .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2008, 19 (04) :270-282
[8]  
Coates Adam, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P561, DOI 10.1007/978-3-642-35289-8_30
[9]  
Correll M, 2016, IEEE CONF VIS ANAL, P131, DOI 10.1109/VAST.2016.7883519
[10]  
Derthick M., 1997, Proceedings of the ACM Symposium on User Interface Software and Technology. 10th Annual Symposium. UIST '97, P189, DOI 10.1145/263407.263545