Determination of transport properties in optoelectronic devices by time-resolved fluorescence imaging

被引:25
作者
Bercegol, Adrien [1 ,2 ,3 ]
El-Hajje, Gilbert [1 ,2 ,3 ]
Ory, Daniel [1 ,2 ,3 ]
Lombez, Laurent [1 ,3 ]
机构
[1] Inst Photovolta Ile de France, IPVF, 30 RD 128, F-91120 Palaiseau, France
[2] EDF R&D, 6 Quai Wattier, F-78400 Chatou, France
[3] UMR 7174 CNRS EDF Chim ParisTech, Inst Res & Dev Photovolta Energy IRDEP, IRDEP, Paris, France
关键词
MINORITY-CARRIER LIFETIME; CU(IN; GA)SE-2; SOLAR-CELLS; PHOTOLUMINESCENCE; EFFICIENCY; RADIATION; GAAS;
D O I
10.1063/1.5005164
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this article, we introduce time-resolved fluorescence imaging as an optical characterization method for optoelectronic devices. Under wide-field illumination, it allows obtaining time-resolved photoluminescence maps with a temporal resolution of 500 ps and a micrometric spatial resolution. An experiment on a GaAs-based solar cell is presented here as a proof of concept. Thanks to a model including diffusion and recombination of minority charge earners, we fit the experimental photoluminescence transients and extract key optoelectronic properties for the considered device. For various fluence levels, we determine an intrinsic bulk recombination lifetime tau(n) = 75 ns, a constant effective diffusion length L-eff = 190 mu m, which is characteristic for the lateral transport inside the solar cell, and an injection-dependent contact recombination velocity S-n, taking its values between 7 x 10(4) and 3 x 10(5) cm/s, which is explained by the saturation of defects. The wide-field illumination notably avoids lateral diffusion artefacts leading to a significant underestimation of tau(n) . Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 32 条
[1]   MEASUREMENT OF MINORITY-CARRIER LIFETIME BY TIME-RESOLVED PHOTOLUMINESCENCE [J].
AHRENKIEL, RK .
SOLID-STATE ELECTRONICS, 1992, 35 (03) :239-250
[2]   Steady-state photocarrier grating technique for the minority-carrier characterisation of thin-film semiconductors [J].
Brueggemann, R. .
16 ISCMP: PROGRESS IN SOLID STATE AND MOLECULAR ELECTRONICS, IONICS AND PHOTONICS, 2010, 253
[3]   Effect of the Pauli principle on photoelectron spin transport in p+ GaAs [J].
Cadiz, F. ;
Paget, D. ;
Rowe, A. C. H. ;
Amand, T. ;
Barate, P. ;
Arscott, S. .
PHYSICAL REVIEW B, 2015, 91 (16)
[4]   Surface recombination in doped semiconductors: Effect of light excitation power and of surface passivation [J].
Cadiz, F. ;
Paget, D. ;
Rowe, A. C. H. ;
Berkovits, V. L. ;
Ulin, V. P. ;
Arscott, S. ;
Peytavit, E. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (10)
[5]   Measurement of Ambipolar Diffusion Coefficient of Photoexcited Carriers with Ultrafast Reflective Grating-Imaging Technique [J].
Chen, Ke ;
Sheehan, Nathanial ;
He, Feng ;
Meng, Xianghai ;
Mason, Sarah C. ;
Bank, Seth R. ;
Wang, Yaguo .
ACS PHOTONICS, 2017, 4 (06) :1440-1446
[6]   Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images [J].
Delamarre, Amaury ;
Lombez, Laurent ;
Guillemoles, Jean-Francois .
JOURNAL OF PHOTONICS FOR ENERGY, 2012, 2
[7]   Back surface band gap gradings in Cu(In,Ga)Se2 solar cells [J].
Dullweber, T ;
Lundberg, O ;
Malmström, J ;
Bodegård, M ;
Stolt, L ;
Rau, U ;
Schock, HW ;
Werner, JH .
THIN SOLID FILMS, 2001, 387 (1-2) :11-13
[8]   Contactless characterization of metastable defects in Cu(In,Ga)Se2 solar cells using time-resolved photoluminescence [J].
El-Hajje, G. ;
Ory, D. ;
Paire, M. ;
Guillemoles, J-F ;
Lombez, L. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 145 :462-467
[9]   On the origin of the spatial inhomogeneity of photoluminescence in thin-film CIGS solar devices [J].
El-Hajje, Gilbert ;
Ory, Daniel ;
Guillemoles, Jean-Francois ;
Lombez, Laurent .
APPLIED PHYSICS LETTERS, 2016, 109 (02)
[10]   High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications [J].
Gessmann, T ;
Schubert, EF .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (05) :2203-2216