Hyperspectral and Multispectral Image Fusion Based on a Sparse Representation

被引:547
作者
Wei, Qi [1 ,2 ]
Bioucas-Dias, Jose [3 ,4 ]
Dobigeon, Nicolas [1 ,2 ]
Tourneret, Jean-Yves [1 ,2 ]
机构
[1] Univ Toulouse, IRIT, F-31068 Toulouse, France
[2] Univ Toulouse, INP ENSEEIHT, F-31068 Toulouse, France
[3] Univ Lisbon, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[4] Univ Lisbon, Inst Super Tecn, P-1049001 Lisbon, Portugal
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 07期
关键词
Alternating direction method of multipliers (ADMM); dictionary; hyperspectral (HS) image; image fusion; multispectral (MS) image; sparse representation; PAN-SHARPENING METHOD; CLASSIFICATION; RECOVERY; SUPERRESOLUTION; APPROXIMATION; ENHANCEMENT; ALGORITHM;
D O I
10.1109/TGRS.2014.2381272
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper presents a variational-based approach for fusing hyperspectral and multispectral images. The fusion problem is formulated as an inverse problem whose solution is the target image assumed to live in a lower dimensional subspace. A sparse regularization term is carefully designed, relying on a decomposition of the scene on a set of dictionaries. The dictionary atoms and the supports of the corresponding active coding coefficients are learned from the observed images. Then, conditionally on these dictionaries and supports, the fusion problem is solved via alternating optimization with respect to the target image (using the alternating direction method of multipliers) and the coding coefficients. Simulation results demonstrate the efficiency of the proposed algorithm when compared with state-of-the-art fusion methods.
引用
收藏
页码:3658 / 3668
页数:11
相关论文
共 56 条
[21]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[22]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745
[23]   Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition [J].
González-Audícana, M ;
Saleta, JL ;
Catalán, RG ;
García, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (06) :1291-1299
[24]   Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [J].
Green, RO ;
Eastwood, ML ;
Sarture, CM ;
Chrien, TG ;
Aronsson, M ;
Chippendale, BJ ;
Faust, JA ;
Pavri, BE ;
Chovit, CJ ;
Solis, MS ;
Olah, MR ;
Williams, O .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :227-248
[25]   Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising - Part I: Theory [J].
Guleryuz, OG .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (03) :539-554
[26]   MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor [J].
Hardie, RC ;
Eismann, MT ;
Wilson, GL .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (09) :1174-1184
[27]   A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors [J].
He, Xiyan ;
Condat, Laurent ;
Bioucas-Dias, Jose M. ;
Chanussot, Jocelyn ;
Xia, Junshi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (09) :4160-4174
[28]   An adaptive Gaussian model for satellite image deblurring [J].
Jalobeanu, A ;
Blanc-Féraud, L ;
Zerubia, J .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (04) :613-621
[29]   Spectral-Spatial Classification of Hyperspectral Data Using Loopy Belief Propagation and Active Learning [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (02) :844-856
[30]   A New Pan-Sharpening Method Using a Compressed Sensing Technique [J].
Li, Shutao ;
Yang, Bin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (02) :738-746