Hyperspectral and Multispectral Image Fusion Based on a Sparse Representation

被引:547
作者
Wei, Qi [1 ,2 ]
Bioucas-Dias, Jose [3 ,4 ]
Dobigeon, Nicolas [1 ,2 ]
Tourneret, Jean-Yves [1 ,2 ]
机构
[1] Univ Toulouse, IRIT, F-31068 Toulouse, France
[2] Univ Toulouse, INP ENSEEIHT, F-31068 Toulouse, France
[3] Univ Lisbon, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
[4] Univ Lisbon, Inst Super Tecn, P-1049001 Lisbon, Portugal
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 07期
关键词
Alternating direction method of multipliers (ADMM); dictionary; hyperspectral (HS) image; image fusion; multispectral (MS) image; sparse representation; PAN-SHARPENING METHOD; CLASSIFICATION; RECOVERY; SUPERRESOLUTION; APPROXIMATION; ENHANCEMENT; ALGORITHM;
D O I
10.1109/TGRS.2014.2381272
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper presents a variational-based approach for fusing hyperspectral and multispectral images. The fusion problem is formulated as an inverse problem whose solution is the target image assumed to live in a lower dimensional subspace. A sparse regularization term is carefully designed, relying on a decomposition of the scene on a set of dictionaries. The dictionary atoms and the supports of the corresponding active coding coefficients are learned from the observed images. Then, conditionally on these dictionaries and supports, the fusion problem is solved via alternating optimization with respect to the target image (using the alternating direction method of multipliers) and the coding coefficients. Simulation results demonstrate the efficiency of the proposed algorithm when compared with state-of-the-art fusion methods.
引用
收藏
页码:3658 / 3668
页数:11
相关论文
共 56 条
[1]   An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) :681-695
[2]   Fast Image Recovery Using Variable Splitting and Constrained Optimization [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2345-2356
[3]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[4]   A survey of classical methods and new trends in pansharpening of multispectral images [J].
Amro, Israa ;
Mateos, Javier ;
Vega, Miguel ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
[5]  
[Anonymous], 2000, P 3 C FUS EARTH DAT
[6]  
[Anonymous], 2013, Bayesian data analysis, third edition
[7]  
[Anonymous], 2007, 2007 IEEE C COMPUTER
[8]  
[Anonymous], 2008, NUMERICAL METHODS SC
[9]  
[Anonymous], 2014, P IEEE S MASS STOR S
[10]  
[Anonymous], 2012, P 4 WORKSH HYP IM SI