An advanced viscosity and density sensor based on diamagnetically stabilized levitation

被引:18
作者
Clara, S. [1 ]
Antlinger, H. [1 ]
Abdallah, A. [1 ]
Reichel, E. [1 ]
Hilber, W. [1 ]
Jakoby, B. [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Microelect & Microsensors, A-4040 Linz, Austria
关键词
Viscosity; Diamagnetic stabilized levitation; Resonant; Rotatory oscillations; RESONATORS;
D O I
10.1016/j.sna.2016.07.021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a viscosity and density measurement principle based on diamagnetically stabilized levitation of a test object (a floating magnet) in the fluid to be characterized. Miniaturized resonant viscosity sensors are usually operated at relatively high frequencies, ranging from the lower kHz to tens of MHz, which utilize shear waves penetrating the liquid in the close vicinity of the vibrating surface thus only enabling the sensing of a small liquid film on the surface. With our approach, we reduce the resonance frequency which increases the penetration depth of the shear wave. Due to the freely levitated measurement body and the magnetic readout no mechanical or electrical connections into the measurement chamber are necessary, making the setup particularly useful for sterile, toxic or poisonous fluids. The design of the setup allows different modes of operation for the floater magnet, e.g., linear oscillations along the (vertical) z-axis and rotational oscillations around the (horizontal) x- or y-axis. In this contribution we analyze the rotational oscillation mode and present a theoretical model. Different additional features such as frequency tunability or the influence of the levitation height are examined. Measurements are discussed that prove the theoretical model and demonstrate the functionality of the principle. The use of rotatory oscillations instead of linear movements leads to a reduced measurement time and less influence of the boundaries. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 53
页数:8
相关论文
共 15 条
[1]   Symmetric mechanical plate resonators for fluid sensing [J].
Abdallah, Ali ;
Reichel, Erwin K. ;
Voglhuber-Brunmaier, Thomas ;
Heinisch, Martin ;
Clara, Stefan ;
Jakoby, Bernhard .
SENSORS AND ACTUATORS A-PHYSICAL, 2015, 232 :319-328
[2]   Sensing the characteristic acoustic impedance of a fluid utilizing acoustic pressure waves [J].
Antlinger, Hannes ;
Clara, Stefan ;
Beigelbeck, Roman ;
Cerimovic, Samir ;
Keplinger, Franz ;
Jakoby, Bernhard .
SENSORS AND ACTUATORS A-PHYSICAL, 2012, 186 :94-99
[3]  
Boerdijk A.H., 1956, PHILIPS TECH REV, V18, P125
[4]  
Clara Stefan, 1937, IEEE SENSORS J, V15
[5]  
Earnshaw S., 1848, Trans. Camb. Philos. Soc, V7, P97
[6]   Tunable resonators in the low kHz range for viscosity sensing [J].
Heinisch, M. ;
Reichel, E. K. ;
Dufour, I. ;
Jakoby, B. .
SENSORS AND ACTUATORS A-PHYSICAL, 2012, 186 :111-117
[7]   Miniaturized Sensors for the Viscosity and Density of Liquids-Performance and Issues [J].
Jakoby, Bernhard ;
Beigelbeck, Roman ;
Keplinger, Franz ;
Lucklum, Frieder ;
Niedermayer, Alexander ;
Reichel, Erwin Konrad ;
Riesch, Christian ;
Voglhuber-Brunnmaier, Thomas ;
Weiss, Bernhard .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2010, 57 (01) :111-120
[8]   FREQUENCY OF A QUARTZ MICROBALANCE IN CONTACT WITH LIQUID [J].
KANAZAWA, KK ;
GORDON, JG .
ANALYTICAL CHEMISTRY, 1985, 57 (08) :1770-1771
[9]   Ex situ online monitoring: application, challenges and opportunities for biopharmaceuticals processes [J].
Kroll, Paul ;
Sagmeister, Patrick ;
Reichelt, Wieland ;
Neutsch, Lukas ;
Klein, Tobias ;
Herwig, Christoph .
PHARMACEUTICAL BIOPROCESSING, 2014, 2 (03) :285-300
[10]  
Landau L. D., 1976, Mechanics