The 2020 motile active matter roadmap

被引:346
作者
Gompper, Gerhard [1 ,2 ]
Winkler, Roland G. [1 ,2 ]
Speck, Thomas [3 ]
Solon, Alexandre [4 ]
Nardini, Cesare [5 ]
Peruani, Fernando [6 ]
Loewen, Hartmut [7 ]
Golestanian, Ramin [8 ,9 ]
Kaupp, U. Benjamin [10 ]
Alvarez, Luis [10 ]
Kiorboe, Thomas [11 ]
Lauga, Eric [12 ]
Poon, Wilson C. K. [13 ,14 ]
DeSimone, Antonio [15 ]
Muinos-Landin, Santiago [16 ]
Fischer, Alexander [16 ]
Soeker, Nicola A. [16 ]
Cichos, Frank [16 ]
Kapral, Raymond [17 ]
Gaspard, Pierre [18 ]
Ripoll, Marisol [1 ,2 ]
Sagues, Francesc [19 ]
Doostmohammadi, Amin [20 ]
Yeomans, Julia M. [21 ]
Aranson, Igor S. [22 ]
Bechinger, Clemens [23 ]
Stark, Holger [24 ]
Hemelrijk, Charlotte K. [25 ]
Nedelec, Francois J. [26 ]
Sarkar, Trinish [27 ]
Aryaksama, Thibault [27 ]
Lacroix, Mathilde [27 ]
Duclos, Guillaume [27 ]
Yashunsky, Victor [27 ]
Silberzan, Pascal [27 ]
Arroyo, Marino [28 ]
Kale, Sohan [28 ]
机构
[1] Forschungszentrum Julich, Inst Complex Syst, Theoret Soft Matter & Biophys, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany
[4] Sorbonne Univ, CNRS, Paris, France
[5] CEA Saclay, Serv Phys Etat Condense, Paris, France
[6] Univ Cote Azur, Nice, France
[7] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys Weiche Mat 2, Dusseldorf, Germany
[8] Max Planck Inst Dynam & Self Org Gottingen, Gottingen, Germany
[9] Univ Oxford, Oxford, England
[10] Ctr Adv European Studies & Res, Mol Sensory Syst, Bonn, Germany
[11] Tech Univ Denmark, DTU Aqua, Ctr Ocean Life, DK-2800 Lyngby, Denmark
[12] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[13] Univ Edinburgh, SUPA, Edinburgh, Midlothian, Scotland
[14] Univ Edinburgh, Sch Phys & Astron, Edinburgh, Midlothian, Scotland
[15] Scuola Super Sant Anna, BioRobot Inst, Pisa, Italy
[16] Univ Leipzig, Peter Debye Inst Soft Matter Phys, Mol Nanophoton Grp, Leipzig, Germany
[17] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON, Canada
[18] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, Brussels, Belgium
[19] Univ Barcelona, Dept Ciencia Mat & Quim Fis, Barcelona, Spain
[20] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[21] Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, Oxford OX13PU, England
[22] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
[23] Univ Konstanz, Dept Phys, Constance, Germany
[24] Tech Univ Berlin, Inst Theoret Phys, Berlin, Germany
[25] Univ Groningen, Groningen, Netherlands
[26] Univ Cambridge, Sainsbury Lab, Cambridge, England
[27] PSL Res Univ, Sorbonne Univ, Lab PhysicoChim Curie, Equipe Labellisee Ligue Canc,CNRS,Inst Curie, Paris, France
[28] Univ Politecn Cataluna, BarcelonaTech, Barcelona, Spain
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
nanomachines; microswimmers; cells; tissues; non-equilibrium systems; hydrodynamics; collective behavior; DENSITY-FUNCTIONAL THEORY; TOPOLOGICAL DEFECTS; COLLECTIVE BEHAVIOR; SELF-ORGANIZATION; ESCHERICHIA-COLI; CELL; SPERM; FLOW; MICROSWIMMERS; CHEMOTAXIS;
D O I
10.1088/1361-648X/ab6348
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano-and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.
引用
收藏
页数:67
相关论文
共 243 条
[1]   Collective behavior of penetrable self-propelled rods in two dimensions [J].
Abkenar, Masoud ;
Marx, Kristian ;
Auth, Thorsten ;
Gompper, Gerhard .
PHYSICAL REVIEW E, 2013, 88 (06)
[2]   Phoresis and Enhanced Diffusion Compete in Enzyme Chemotaxis [J].
Agudo-Canalejo, Jaime ;
Illien, Pierre ;
Golestanian, Ramin .
NANO LETTERS, 2018, 18 (04) :2711-2717
[3]   Simulating the Complex Cell Design of Trypanosoma brucei and Its Motility [J].
Alizadehrad, Davod ;
Krueger, Timothy ;
Engstler, Markus ;
Stark, Holger .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (01)
[4]   Microfluidic flow actuation using magnetoactive suspensions [J].
Alonso-Matilla, R. ;
Saintillan, D. .
EPL, 2018, 121 (02)
[5]   Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers [J].
Alouges, F. ;
DeSimone, A. ;
Giraldi, L. ;
Zoppello, M. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2013, 56 :132-141
[6]   Optimal strokes for low Reynolds number swimmers: An example [J].
Alouges, Francois ;
DeSimone, Antonio ;
Lefebvre, Aline .
JOURNAL OF NONLINEAR SCIENCE, 2008, 18 (03) :277-302
[7]   Vertex models: from cell mechanics to tissue morphogenesis [J].
Alt, Silvanus ;
Ganguly, Poulami ;
Salbreux, Guillaume .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2017, 372 (1720)
[8]   The computational sperm cell [J].
Alvarez, Luis ;
Friedrich, Benjamin M. ;
Gompper, Gerhard ;
Kaupp, U. Benjamin .
TRENDS IN CELL BIOLOGY, 2014, 24 (03) :198-207
[9]   TRANSPORT MECHANISMS OF BIOLOGICAL COLLOIDS [J].
ANDERSON, JL .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1986, 469 :166-177
[10]  
[Anonymous], 2018, ARXIV180306425