Examining the sustainability of China's nickel supply: 1950-2050

被引:62
作者
Zeng, Xianlai [1 ,2 ]
Xu, Ming [3 ,4 ]
Li, Jinhui [1 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[2] Minist Land & Resources, Key Lab Carrying Capac Assessment Resource & Envi, Beijing 100083, Peoples R China
[3] Univ Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金;
关键词
Nickel; Sustainability; Recycling; Resource utilization; China; RESOURCES; DEMAND; METALS; BATTERIES; DEPLETION; TRENDS; COPPER; STOCKS; CYCLE;
D O I
10.1016/j.resconrec.2018.08.011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rapid economic growth and accelerating urbanization in the past three decades have accelerated the exhaustion of China's mineral resources. China is the world's largest consumer and importer of nickel resources; therefore, a growing domestic demand will increase China's import dependence and in turn make it potentially vulnerable to supply shortages. One hundred years from 1950 to 2050 were examined for China's nickel utilization. Identified domestic nickel resources can only sustain China's industries until 2017, but nickel will reach peak utilization around the year of 2020-2022. Given the 5% annual increase in applications and the growing importation of minerals in China, the carrying duration of nickel resources until 2020 will require a nickel-recycling rate of more than 90%. To sustain China's nickel utilization, future strategies should foster three solutions: maintaining a high level of imports, adjusting the landscape of nickel applications, and shifting from virgin mining of geological minerals to urban mining of anthropogenic resources.
引用
收藏
页码:188 / 193
页数:6
相关论文
共 47 条
[1]  
AHP A. P, 2017, TECHNICAL EC ANAL PL
[2]   Mineral supply for sustainable development requires resource governance [J].
Ali, Saleem H. ;
Giurco, Damien ;
Arndt, Nicholas ;
Nickless, Edmund ;
Brown, Graham ;
Demetriades, Alecos ;
Durrheim, Ray ;
Enriquez, Maria Amelia ;
Kinnaird, Judith ;
Littleboy, Anna ;
Meinert, Lawrence D. ;
Oberhansli, Roland ;
Salem, Janet ;
Schodde, Richard ;
Schneider, Gabi ;
Vidal, Olivier ;
Yakovleva, Natalia .
NATURE, 2017, 543 (7645) :367-372
[3]  
Bringezu S., 2018, ASSESSING GLOBAL RES
[4]  
Council S., 2012, ENERGY SAVING NEW EN
[5]   The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review [J].
Daneshgar, Saba ;
Callegari, Arianna ;
Capodaglio, Andrea G. ;
Vaccari, David .
RESOURCES-BASEL, 2018, 7 (02)
[6]   Security of mineral resources: A new framework for quantitative assessment of criticality [J].
Daw, Georges .
RESOURCES POLICY, 2017, 53 :173-189
[7]   Which Anthropocene is it to be? Beyond geology to amoral and public discourse [J].
Ellis, Michael A. ;
Trachtenberg, Zev .
EARTHS FUTURE, 2014, 2 (02) :122-125
[8]   Resource Demand Scenarios for the Major Metals [J].
Elshkaki, Ayman ;
Graedel, T. E. ;
Ciacci, Luca ;
Reck, Barbara K. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (05) :2491-2497
[9]   Anthropogenic nickel supply, demand, and associated energy and water use [J].
Elshkaki, Ayman ;
Reck, Barbara K. ;
Graedel, T. E. .
RESOURCES CONSERVATION AND RECYCLING, 2017, 125 :300-307
[10]   Assessing the supply potential of high-tech metals - A general method [J].
Frenzel, Max ;
Tolosana-Delgado, Raimon ;
Gutzmer, Jens .
RESOURCES POLICY, 2015, 46 :45-58