ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data

被引:1146
作者
Pruim, Raimon H. R. [1 ,2 ]
Mennes, Maarten [1 ,2 ]
van Rooij, Daan [2 ,3 ]
Llera, Alberto [2 ]
Buitelaar, Jan K. [1 ,2 ,4 ]
Beckmann, Christian F. [1 ,2 ,5 ]
机构
[1] Radboudumc, Donders Inst Brain Cognit & Behav, Dept Cognit Neurosci, Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Ctr Cognit Neuroimaging, NL-6525 ED Nijmegen, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Psychiat, Groningen, Netherlands
[4] Karakter Child & Adolescent Psychiat Univ Ctr, Nijmegen, Netherlands
[5] Univ Oxford, Oxford Ctr Funct Magnet Resonance Imaging Brain, Oxford, England
基金
英国惠康基金; 欧洲研究理事会;
关键词
Motion; Artifact; Independent component analysis; Functional MRI; Resting state; Connectivity; INDEPENDENT COMPONENT ANALYSIS; FUNCTIONAL CONNECTIVITY MRI; RESTING-STATE NETWORKS; HEAD MOTION; IMPACT; BOLD; NOISE; IDENTIFICATION; OPTIMIZATION; REGISTRATION;
D O I
10.1016/j.neuroimage.2015.02.064
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Head motion during functional MRI (fMRI) scanning can induce spurious findings and/or harm detection of true effects. Solutions have been proposed, including deleting ('scrubbing') or regressing out ('spike regression') motion volumes from fMRI time-series. These strategies remove motion-induced signal variations at the cost of destroying the autocorrelation structure of the fMRI time-series and reducing temporal degrees of freedom. ICA-based fMRI denoising strategies overcome these drawbacks but typically require re-training of a classifier, needing manual labeling of derived components (e.g. ICA-FIX; Salimi-Khorshidi et al. (2014)). Here, we propose an ICA-based strategy for Automatic Removal of Motion Artifacts (ICA-AROMA) that uses a small (n = 4), but robust set of theoretically motivated temporal and spatial features. Our strategy does not require classifier re-training, retains the data's autocorrelation structure and largely preserves temporal degrees of freedom. We describe ICA-AROMA, its implementation, and initial validation. ICA-AROMA identified motion components with high accuracy and robustness as illustrated by leave-N-out cross-validation. We additionally validated ICA-AROMA in resting-state (100 participants) and task-based fMRI data (118 participants). Our approach removed (motion-related) spurious noise from both rfMRI and task-based fMRI data to larger extent than regression using 24 motion parameters or spike regression. Furthermore, ICA-AROMA increased sensitivity to group-level activation. Our results show that ICA-AROMA effectively reduces motion-induced signal variations in fMRI data, is applicable across datasets without requiring classifier re-training, and preserves the temporal characteristics of the fMRI data. (C) 2015 Elsevier Inc. All
引用
收藏
页码:267 / 277
页数:11
相关论文
共 58 条
[1]  
Andersson J, 2007, TECHNICAL REPORT
[2]   SimPACE: Generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: A new, highly effective slicewise motion correction [J].
Beall, Erik B. ;
Lowe, Mark J. .
NEUROIMAGE, 2014, 101 :21-34
[3]  
Beckmann C.F., 2009, Neuroimage, V47, pS39, DOI [10.1016/S1053-8119(09)71511-3, DOI 10.1016/S1053-8119(09)71511-3]
[4]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[5]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[6]   A component based noise correction method (CompCor) for BOLD and perfusion based fMRI [J].
Behzadi, Yashar ;
Restom, Khaled ;
Liau, Joy ;
Liu, Thomas T. .
NEUROIMAGE, 2007, 37 (01) :90-101
[7]   An automated method for identifying artifact in independent component analysis of resting-state fMRI [J].
Bhaganagarapu, Kaushik ;
Jackson, Graeme D. ;
Abbott, David F. .
FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7
[8]   The effect of scan length on the reliability of resting-state fMRI connectivity estimates [J].
Birn, Rasmus M. ;
Molloy, Erin K. ;
Patriat, Remi ;
Parker, Taurean ;
Meier, Timothy B. ;
Kirk, Gregory R. ;
Nair, Veena A. ;
Meyerand, M. Elizabeth ;
Prabhakaran, Vivek .
NEUROIMAGE, 2013, 83 :550-558
[9]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[10]   Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks [J].
Calhoun, Vince D. ;
Kiehl, Kent A. ;
Pearlson, Godfrey D. .
HUMAN BRAIN MAPPING, 2008, 29 (07) :828-838