Pisot substitutions and Rauzy fractals

被引:163
作者
Arnoux, P
Ito, S
机构
[1] Inst Math Luminy, UPR 9016, F-13288 Marseille 9, France
[2] Tsuda Coll, Dept Math, Kodaira, Tokyo 187, Japan
关键词
substitutions; translations on compact groups; tilings; fractal sets;
D O I
10.36045/bbms/1102714169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the dynamical system generated by a primitive unimodular substitution of the Pisot type on d letters satisfying a combinatorial condition which is easy to check, is measurably isomorphic to a domain `exchange in Rd-1, and is a finite extension of a translation on the torus Td-1. I, the course of the proof, we introduce some potentially useful notions: the linear maps associated to a substitution and their dual maps, and the sigma -structure for a dynamical system with respect to a pair of partitions.
引用
收藏
页码:181 / 207
页数:27
相关论文
共 14 条
[1]   GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1 [J].
ARNOUX, P ;
RAUZY, G .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :199-215
[2]  
ARNOUX P, 2001, IN PRESS J ANALYSE
[3]  
Barnsley M. F., 2014, Fractals Everywhere
[4]   Imbalances in Arnoux-Rauzy sequences [J].
Cassaigne, J ;
Ferenczi, S ;
Zamboni, LQ .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (04) :1265-+
[5]  
DEKKING M, 1977, Z WARSCHEINLICHKEITS, V41, P221
[6]  
FURUKADO M, 1998, RAUZY FRACTALS JORDA
[7]  
HOST B, UNPUB
[8]  
Ito S., 1993, TOKYO J MATH, V16, P441
[9]  
Ito S., 1991, JAPAN J IND APPL MAT, V8, P461
[10]  
ITO S, 1994, TOKYO J MATH