Stability and oxygen ionic conductivity of zircon-type Ce1-xAxVO4+δ (A = Ca, Sr)

被引:35
作者
Tsipis, EV
Kharton, VV [1 ]
Vyshatko, NP
Shaula, AL
Frade, JR
机构
[1] Univ Aveiro, CICECO, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal
[2] Belarusian State Univ, Inst Physicochem Problems, Minsk 220050, BELARUS
关键词
cerium vanadate; zircon; stability; phase decomposition; transference number; faradaic efficiency; conductivity; seebeck coefficient; thermal expansion;
D O I
10.1016/S0022-4596(03)00342-6
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Zircon-type Ce(1-x)A(x)VO(4+delta) (A= Ca, Sr; x = 0-0.2) are stable in air up to approximately 1300 K, whilst further heating or reducing oxygen partial pressure leads to formation of A-site deficient zircon and CeO2-delta phases. The stability boundaries of Ce(1-x)A(x)VO(4+delta) are comparable to those of vanadium dioxide and calcium orthovanadate. At oxygen pressures lower than 10(-15) atm, perovskite-type CeVO3-delta is formed. The oxygen ion transference numbers of Ce(1-x)A(x)VO(4+delta), determined by faradaic efficiency measurements in air, vary in the range from 2 x 10(-4) to 6 x 10(-3) at 973-1223 K, increasing with temperature. The oxygen ionic conductivity has activation energy of 87-112 kJ/mol and is essentially independent of A-site dopant content. Contrary to the ionic transport, p-type electronic conductivity and Seebeck coefficient of Ce(1-x)A(x)VO(4+delta) are influenced by the divalent cation concentration. The average thermal expansion coefficients of Ce(1-x)A(x)VO(4+delta), calculated from high-temperature XRD and dilatometric data in air, are (4.7-6.1) x 10(-6) K-1. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 33 条
[1]   CRYSTAL-STRUCTURE REFINEMENTS OF ZIRCON-TYPE MVO4 (M=SC, Y, CE, PR, ND, TB, HO, ER, TM, YB, LU) [J].
CHAKOUMAKOS, BC ;
ABRAHAM, MM ;
BOATNER, LA .
JOURNAL OF SOLID STATE CHEMISTRY, 1994, 109 (01) :197-202
[2]   51V MAS NMR characterization of V-Ce-O catalysts. [J].
Cousin, R ;
Courcot, D ;
Abi-Aad, E ;
Capelle, S ;
Amoureux, JP ;
Dourdin, M ;
Guelton, M ;
Aboukaïs, A .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1999, 158 (1-2) :43-49
[3]   The effect of cobalt oxide sintering aid on electronic transport in Ce0.80Gd0.20O2-δ electrolyte [J].
Fagg, DP ;
Abrantes, JCC ;
Pérez-Coll, D ;
Núñez, P ;
Kharton, VV ;
Frade, JR .
ELECTROCHIMICA ACTA, 2003, 48 (08) :1023-1029
[4]   ELECTRICAL TRANSPORT IN LIGHT RARE-EARTH VANADATES [J].
GAUR, K ;
LAL, HB .
JOURNAL OF MATERIALS SCIENCE, 1985, 20 (09) :3167-3176
[5]   Structural consideration on the ionic conductivity of perovskite-type oxides [J].
Hayashi, H ;
Inaba, H ;
Matsuyama, M ;
Lan, NG ;
Dokiya, M ;
Tagawa, H .
SOLID STATE IONICS, 1999, 122 (1-4) :1-15
[6]   Raman and infrared spectroscopic study of Ce1-xMxVO4-0.5x (M=Pb, Sr, and Ca) and Ce1-xBixVO4 solid solutions [J].
Hirata, T ;
Watanabe, A .
JOURNAL OF SOLID STATE CHEMISTRY, 2001, 158 (02) :254-259
[7]   OXIDE-ION CONDUCTION IN SOLID-SOLUTIONS LN(1-X)SR(X)COO(3-DELTA)(LN=LA,PR,ND) [J].
KHARTON, VV ;
NAUMOVICH, EN ;
VECHER, AA ;
NIKOLAEV, AV .
JOURNAL OF SOLID STATE CHEMISTRY, 1995, 120 (01) :128-136
[8]   Electron-hole conduction in Pr-doped Ce(Gd)O2-δ by faradaic efficiency and emf measurements [J].
Kharton, VV ;
Viskup, AP ;
Figueiredo, FM ;
Naumovich, EN ;
Yaremchenko, AA ;
Marques, FMB .
ELECTROCHIMICA ACTA, 2001, 46 (18) :2879-2889
[9]   Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure [J].
Kharton, VV ;
Viskup, AP ;
Kovalevsky, AV ;
Naumovich, EN ;
Marques, FMB .
SOLID STATE IONICS, 2001, 143 (3-4) :337-353
[10]   Ceria-based materials for solid oxide fuel cells [J].
Kharton, VV ;
Figueiredo, FM ;
Navarro, L ;
Naumovich, EN ;
Kovalevsky, AV ;
Yaremchenko, AA ;
Viskup, AP ;
Carneiro, A ;
Marques, FMB ;
Frade, JR .
JOURNAL OF MATERIALS SCIENCE, 2001, 36 (05) :1105-1117