Viscous fingering in reaction-diffusion systems

被引:104
|
作者
De Wit, A [1 ]
Homsy, GM
机构
[1] Free Univ Brussels, Serv Chim Phys, B-1050 Brussels, Belgium
[2] Free Univ Brussels, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
[3] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 1999年 / 110卷 / 17期
关键词
D O I
10.1063/1.478774
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The problem of viscous fingering is studied in the presence of simultaneous chemical reactions. The flow is governed by the usual Darcy equations, with a concentration-dependent viscosity. The concentration field in turn obeys a reaction-convection-diffusion equation in which the rate of chemical reaction is taken to be a function of the concentration of a single chemical species and admits two stable equilibria separated by an unstable one. The solution depends on four dimensionless parameters: R, the log mobility ratio, Pe, the Peclet number, alpha, the Damkohler number or dimensionless rate constant, and d, the dimensionless concentration of the unstable equilibrium. The resulting nonlinear partial differential equations are solved by direct numerical simulation over a reasonably wide range of Pe, alpha, and d. We find new mechanisms of finger propagation that involve the formation of isolated regions of either less or more viscous fluid in connected domains of the other. Both the mechanism of formation of these regions and their effects on finger propagation are studied in some detail. (C) 1999 American Institute of Physics. [S0021-9606(99)51516-X].
引用
收藏
页码:8663 / 8675
页数:13
相关论文
共 50 条
  • [1] Viscous fingering in reaction-diffusion systems
    Service de Chimie Physique, Centre for Nonlinear Phenomena and Complex Systems, CP 231, Université Libre de Bruxelles, 1050 Brussels, Belgium
    不详
    J Chem Phys, 17 (8663-8675):
  • [2] Viscous fingering in reaction-diffusion systems.
    De Wit, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U283 - U283
  • [3] Fingering instabilities of exothermic reaction-diffusion fronts in porous media
    Kalliadasis, S
    Yang, J
    De Wit, A
    PHYSICS OF FLUIDS, 2004, 16 (05) : 1395 - 1409
  • [4] Resilience in reaction-diffusion systems
    van Vuuren, JH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1999, 63 (02) : 179 - 197
  • [5] Multispecies reaction-diffusion systems
    Aghamohammadi, A
    Fatollahi, AH
    Khorrami, M
    Shariati, A
    PHYSICAL REVIEW E, 2000, 62 (04): : 4642 - 4649
  • [6] SEGREGATION IN REACTION-DIFFUSION SYSTEMS
    TAITELBAUM, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 200 (1-4) : 155 - 164
  • [7] REPELLERS IN REACTION-DIFFUSION SYSTEMS
    HUTSON, V
    MORAN, W
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1987, 17 (02) : 301 - 314
  • [8] An efficient diffusion model for viscous fingering
    Cha, Seunghoon
    Park, Jinho
    Hwang, Jonghyun
    Noh, Junyong
    VISUAL COMPUTER, 2012, 28 (6-8): : 563 - 571
  • [9] An efficient diffusion model for viscous fingering
    Seunghoon Cha
    Jinho Park
    Jonghyun Hwang
    Junyong Noh
    The Visual Computer, 2012, 28 : 563 - 571
  • [10] Viscous fingering in polymer systems
    Kawaguchi, M
    KOBUNSHI RONBUNSHU, 1999, 56 (10) : 597 - 608