Effect of Nanoslit Confinement on the Knotting Probability of Circular DNA

被引:58
|
作者
Dai, Liang [1 ]
van der Maarel, Johan R. C. [1 ,2 ]
Doyle, Patrick S. [1 ,3 ]
机构
[1] Singapore MIT Alliance Res & Technol SMART Ctr, BioSyst & Micromech BioSyM IRG, Singapore 117543, Singapore
[2] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
来源
ACS MACRO LETTERS | 2012年 / 1卷 / 06期
基金
美国国家科学基金会;
关键词
DRIVEN SPATIAL-ORGANIZATION; PHAGE CAPSIDS; RING POLYMERS; MOLECULES; DYNAMICS; TOPOLOGY; NANOCHANNELS; STATISTICS; CHAIN; KNOTS;
D O I
10.1021/mz3001622
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Monte Carlo simulations are used to study the knotting probability of circular DNA confined in a slit. We systematically vary the slit height, the width, and the contour length of the DNA molecule. We find that the trend in knotting probability with respect to slit height can be monotonic or nonmonotonic, depending on the width and contour length. The nonmonotonic trend is caused by two competing factors: the increase of the effective persistence length and the increase of segment density by slit confinement. These factors are antagonistic, in the sense that the increase in effective persistence length disfavors knot formation, whereas the increase in segment density favors the knotting probability. Our simulation results bring to light the importance of both chain length and width for slit-confined circular DNA and can be used to guide future experiments which aim to produce populations of knotted DNA through cyclization or catalyzed double-strand passage reactions in confinement.
引用
收藏
页码:732 / 736
页数:5
相关论文
共 50 条
  • [21] Knotting and Unknotting Dynamics of DNA Strands in Nanochannels
    Micheletti, Cristian
    Orlandini, Enzo
    ACS MACRO LETTERS, 2014, 3 (09) : 876 - 880
  • [22] Topological sum rules in the knotting probabilities of DNA
    Deguchi, Tetsuo
    Uehara, Erica
    TOPOLOGY AND GEOMETRY OF BIOPOLYMERS, 2020, 746 : 57 - 83
  • [23] Mixed confinement regimes during equilibrium confinement spectroscopy of DNA
    Gupta, Damini
    Sheats, Julian
    Muralidhar, Abhiram
    Miller, Jeremy J.
    Huang, Derek E.
    Mahshid, Sara
    Dorfman, Kevin D.
    Reisner, Walter
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (21)
  • [24] Nonequilibrium separation of short DNA using nanoslit arrays
    Strychalski, Elizabeth A.
    Lau, Henry W.
    Archer, Lynden A.
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (02)
  • [25] Stretching and compression of DNA by external forces under nanochannel confinement
    Bleha, Tomas
    Cifra, Peter
    SOFT MATTER, 2018, 14 (07) : 1247 - 1259
  • [26] Knotting probability of self-avoiding polygons under a topological constraint
    Uehara, Erica
    Deguchi, Tetsuo
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (09)
  • [27] Hydrophobic confinement modulates thermal stability and assists knotting in the folding of tangled proteins
    Especial, Joao
    Nunes, Ana
    Rey, Antonio
    Faisca, Patricia F. N.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (22) : 11764 - 11775
  • [28] Transcriptional supercoiling boosts topoisomerase II-mediated knotting of intracellular DNA
    Valdes, Antonio
    Coronel, Lucia
    Martinez-Garcia, Belen
    Segura, Joana
    Dyson, Silvia
    Diaz-Ingelmo, Ofelia
    Micheletti, Cristian
    Roca, Joaquim
    NUCLEIC ACIDS RESEARCH, 2019, 47 (13) : 6946 - 6955
  • [29] Knotting of linear DNA in nano-slits and nano-channels: a numerical study
    Enzo Orlandini
    Cristian Micheletti
    Journal of Biological Physics, 2013, 39 : 267 - 275
  • [30] Non-monotonic knotting probability and knot length of semiflexible rings: the competing roles of entropy and bending energy
    Coronel, Lucia
    Orlandini, Enzo
    Micheletti, Cristian
    SOFT MATTER, 2017, 13 (23) : 4260 - 4267