A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series

被引:47
作者
Moulines, E. [1 ]
Roueff, F. [1 ]
Taqqu, M. S. [2 ]
机构
[1] ENST, F-75634 Paris 13, France
[2] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
关键词
long memory; semiparametric estimation; wavelet analysis;
D O I
10.1214/07-AOS527
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a time series X = (X-k, k is an element of Z) with memory parameter d(0) is an element of R. This time series is either stationary or can be made stationary after differencing a finite number of times. We study the "local Whittle wavelet estimator" of the memory parameter d(0). This is a wavelet-based semiparametric pseudo-likelihood maximum method estimator. The estimator may depend on a given finite range of scales or on a range which becomes infinite with the sample size. We show that the estimator is consistent and rate optimal if X is a linear process, and is asymptotically normal if X is Gaussian.
引用
收藏
页码:1925 / 1956
页数:32
相关论文
共 23 条
[1]   Wavelet analysis of long-range-dependent traffic [J].
Abry, P ;
Veitch, D .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :2-15
[2]  
[Anonymous], 1993, Ten Lectures of Wavelets
[3]  
Boyd S., 2004, CONVEX OPTIMIZATION
[4]  
Cohen A., 2003, STUDIES MATH ITS APP, V32
[5]   Estimation of the memory parameter of the infinite-source Poisson process [J].
Fay, Gilles ;
Roueff, Francois ;
Soulier, Philippe .
BERNOULLI, 2007, 13 (02) :473-491
[6]  
Geweke J., 1983, J TIME SER ANAL, V4, P221, DOI [DOI 10.1111/J.1467-9892.1983.TB00371.X, 10.1111/j.1467-9892.1983.tb00371.x]
[7]  
Giraitis L., 1997, Journal of Time Series Analysis, V18, P49
[8]   The FEXP estimator for potentially non-stationary linear time series [J].
Hurvich, CM ;
Moulines, E ;
Soulier, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 97 (02) :307-340
[9]  
Hurvich CM, 1995, J. Time Series Anal., V16, P17
[10]   FRACTAL ESTIMATION FROM NOISY DATA VIA DISCRETE FRACTIONAL GAUSSIAN-NOISE (DFGN) AND THE HAAR BASIS [J].
KAPLAN, LM ;
KUO, CCJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3554-3562