Nitrous oxide emissions from wastewater treatment processes

被引:410
作者
Law, Yingyu [1 ]
Ye, Liu [1 ]
Pan, Yuting [1 ]
Yuan, Zhiguo [1 ]
机构
[1] Univ Queensland, AWMC, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
emissions; greenhouse gases; nitrous oxide; nitrogen removal; wastewater treatment; DENITRIFYING ACTIVATED-SLUDGE; FILAMENTOUS ORGANISM BULKING; NITRITE REDUCTASE GENES; NITROSOMONAS-EUROPAEA; SIMULTANEOUS NITRIFICATION; N2O PRODUCTION; ALCALIGENES-FAECALIS; NITRIFYING BACTERIA; PHOSPHORUS REMOVAL; AMMONIA OXIDATION;
D O I
10.1098/rstb.2011.0317
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future.
引用
收藏
页码:1265 / 1277
页数:13
相关论文
共 97 条
[1]   N2O Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring Survey in the United States [J].
Ahn, Joon Ho ;
Kim, Sungpyo ;
Park, Hongkeun ;
Rahm, Brian ;
Pagilla, Krishna ;
Chandran, Kartik .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (12) :4505-4511
[2]   An oxygen insensitive microsensor for nitrous oxide [J].
Andersen, K ;
Kjær, T ;
Revsbech, NP .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 81 (01) :42-48
[3]   O2 AND H2O ARE EACH THE SOURCE OF ONE O IN NO2- PRODUCED FROM NH3 BY NITROSOMONAS - N-15-NMR EVIDENCE [J].
ANDERSSON, KK ;
HOOPER, AB .
FEBS LETTERS, 1983, 164 (02) :236-240
[4]   The impact of genome analyses on our understanding of ammonia-oxidizing bacteria [J].
Arp, Daniel J. ;
Chain, Patrick S. G. ;
Klotz, Martin G. .
ANNUAL REVIEW OF MICROBIOLOGY, 2007, 61 :503-528
[5]   Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor [J].
Beaumont, HJE ;
Lens, SI ;
Reijnders, WNM ;
Westerhoff, HV ;
van Spanning, RJM .
MOLECULAR MICROBIOLOGY, 2004, 54 (01) :148-158
[6]   Novel nirK cluster genes in Nitrosomonas europaea are required for NirK-dependent tolerance to nitrite [J].
Beaumont, HJE ;
Lens, SI ;
Westerhoff, HV ;
van Spanning, RJA .
JOURNAL OF BACTERIOLOGY, 2005, 187 (19) :6849-6851
[7]  
Benckiser G, 1996, BIOL FERT SOILS, V23, P257, DOI 10.1007/s003740050169
[8]   KINETIC EXPLANATION FOR ACCUMULATION OF NITRITE, NITRIC-OXIDE, AND NITROUS-OXIDE DURING BACTERIAL DENITRIFICATION [J].
BETLACH, MR ;
TIEDJE, JM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1981, 42 (06) :1074-1084
[9]   NITROGEN LOSS CAUSED BY DENITRIFYING NITROSOMONAS CELLS USING AMMONIUM OR HYDROGEN AS ELECTRON-DONORS AND NITRITE AS ELECTRON-ACCEPTOR [J].
BOCK, E ;
SCHMIDT, I ;
STUVEN, R ;
ZART, D .
ARCHIVES OF MICROBIOLOGY, 1995, 163 (01) :16-20
[10]  
Bock E., 1991, VARIATIONS AUTOTROPH, P171