Commissioning of the Wendelstein 7-X in Vessel Control Coils

被引:3
作者
Fuellenbach, Frank [1 ]
Risse, K. [1 ]
Rummel, T. [1 ]
Eeten, P. V. [1 ]
Carls, A. [1 ]
Volzke, O. [1 ]
Haas, M. [1 ]
Bosch, H. -S. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-17491 Greifwald, Germany
关键词
Coils; Cooling; Power supplies; Superconducting magnets; Plasmas; Windings; Magnetic separation; Converters; electromagnets; fusion power generation; power electronics;
D O I
10.1109/TPS.2020.2968569
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The magnet system of the stellarator fusion device Wendelstein 7-X (W7-X) is composed of three different groups of coil systems. The main magnetic field is created by a superconducting magnet system that is accompanied by two sets of normal conducting coil groups, the trim coils positioned outside of the cryostat and the control coils (CCs) inside the plasma vessel. The CC system consists of ten 3-D shaped coils, power supplies, cooling systems, high current feeds, and an autonomous remote control system. The coils are situated behind the baffle plates of the ten divertor units. The magnetic field created by the CC system allows for the correction of error fields to influence the islands at the plasma boundary and for the sweeping of the separatrix, e.g., the point of the largest power position across the divertor. At the end of 2015, the installation of the CC system was completed and the integral commissioning took place in parallel with the ongoing completion of W7-X. For the first time, the CCs and their power supply were operated in conjunction with all auxiliary systems like the power distribution system, the high current feeds, the interspace vacuum system, the cooling system, and the safety control system. This article describes the results obtained and experiences gained during the integral commissioning of the CC system, including the baking process in preparation for the first experimental campaign of W7-X.
引用
收藏
页码:2635 / 2638
页数:4
相关论文
共 50 条
  • [21] Increasing the density in Wendelstein 7-X: benefits and limitations
    Fuchert, G.
    Brunner, K. J.
    Rahbarnia, K.
    Stange, T.
    Zhang, D.
    Baldzuhn, J.
    Bozhenkov, S. A.
    Beidler, C. D.
    Beurskens, M. N. A.
    Brezinsek, S.
    Burhenn, R.
    Damm, H.
    Dinklage, A.
    Feng, Y.
    Hacker, P.
    Hirsch, M.
    Kazakov, Y.
    Knauer, J.
    Langenberg, A.
    Laqua, H. P.
    Lazerson, S.
    Pablant, N. A.
    Pasch, E.
    Reimold, F.
    Pedersen, T. Sunn
    Scott, E. R.
    Warmer, F.
    Winters, V. R.
    Wolf, R. C.
    [J]. NUCLEAR FUSION, 2020, 60 (03)
  • [22] The Requirements for the Fast Interlock System of Wendelstein 7-X
    Degenkolbe, Sven
    Bosch, Hans-Stephan
    Grulke, Olaf
    Schacht, Jorg
    Scharff, Erik
    Vilbrandt, Reinhard
    Winter, Axel
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (09) : 3622 - 3627
  • [23] Wendelstein 7-X Magnets: Experiences Gained During the First Years of Operation
    Rummel, Thomas
    Risse, Konrad
    Nagel, Michael
    Moenich, Thomas
    Schneider, Matthias
    Fuelenbach, Frank
    Bosch, Hans-Stephan
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2019, 75 (08) : 786 - 793
  • [24] First results from divertor operation in Wendelstein 7-X
    Pedersen, Thomas Sunn
    Koenig, Ralf
    Krychowiak, Maciej
    Jakubowski, Marcin
    Baldzuhn, Juergen
    Bozhenkov, Sergey
    Fuchert, Golo
    Langenberg, Andreas
    Niemann, Holger
    Zhang, Daihong
    Rahbarnia, Kian
    Bosch, Hans-Stephan
    Kazakov, Yevgen
    Brezinsek, Sebastijan
    Gao, Yu
    Pablant, Novimir
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (01)
  • [25] Bolometer tomography on Wendelstein 7-X for study of radiation asymmetry
    Zhang, D.
    Burhenn, R.
    Beidler, C. D.
    Feng, Y.
    Thomsen, H.
    Brandt, C.
    Buller, S.
    Reimold, F.
    Hacker, P.
    Laube, R.
    Geiger, J.
    Garcia Regana, J. M.
    Smith, H. M.
    Koenig, R.
    Giannone, L.
    Penzel, F.
    Klinger, T.
    Baldzuhn, J.
    Bozhenkov, S.
    Braeuer, T.
    Brunner, J. K.
    Buttenschoen, B.
    Damm, H.
    Endler, M.
    Effenberg, F.
    Fuchert, G.
    Gao, Y.
    Jakubowski, M.
    Knauer, J.
    Kremeyer, T.
    Krychowiak, M.
    Kwak, S.
    Laqua, H. P.
    Langenberg, A.
    Otte, M.
    Pablant, N.
    Pasch, E.
    Rahbarnia, K.
    Pavone, A.
    Rudischhauser, L.
    Svensson, J.
    Killer, C.
    Windisch, T.
    [J]. NUCLEAR FUSION, 2021, 61 (11)
  • [26] Construction of Wendelstein 7-X - engineering a steady state stellarator
    Bosch, H. -S.
    Erckmann, V.
    Koenig, R.
    Schauer, F.
    Stadler, R.
    Werner, A.
    [J]. 2009 23RD IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2009, : 696 - 702
  • [27] Collective Thomson scattering data analysis for Wendelstein 7-X
    Abramovic, I.
    Pavone, A.
    Svensson, J.
    Moseev, D.
    Salewski, M.
    Laqua, H. P.
    Cardozo, N. J. Lopes
    Wolf, R. C.
    [J]. JOURNAL OF INSTRUMENTATION, 2017, 12
  • [28] Design of a Continuous Pellet Fueling System for Wendelstein 7-X
    Meitner, Steven J.
    Baylor, L. R.
    Gebhart, T. E.
    Harris, J. H.
    McGinnis, W. D.
    Bjorholm, T. P.
    Logan, K. G.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (06) : 1585 - 1590
  • [29] Overview of the Wendelstein 7-X phase contrast imaging diagnostic
    Edlund, E. M.
    Porkolab, M.
    Huang, Z.
    Grulke, O.
    Boettger, L. -G.
    von Sehren, C.
    von Stechow, A.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10)
  • [30] Updates on protection system for Wendelstein 7-X superconducting magnets
    Risse, Konrad
    Rummel, Thomas
    Moennich, Thomas
    Ftillenbach, Frank
    Bosch, Hans-Stephan
    [J]. FUSION ENGINEERING AND DESIGN, 2019, 146 : 910 - 913