Tensile hoop stress-, hydrogen content- and cooling rate-dependent hydride reorientation behaviors of Zr alloy cladding tubes

被引:22
作者
Cha, Hyun-Jin [1 ]
Won, Ju-Jin [1 ]
Jang, Ki-Nam [1 ]
An, Ji-Hyeong [1 ]
Kim, Kyu-Tae [1 ]
机构
[1] Dongguk Univ, Coll Energy & Environm, Gyeongju 780714, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
ORIENTED HYDRIDES; ZIRCALOY; PRECIPITATION; EMBRITTLEMENT; TEMPERATURE; ORIENTATION; DEGRADATION;
D O I
10.1016/j.jnucmat.2015.04.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
250 ppm hydrogen-charged (250 ppm-H) and 500 ppm-H Zr alloy cladding tubes oxidized to 2.5 mu m at their inner and outer surfaces were employed to examine the effect of tensile hoop stress, hydrogen content, cooling rate and oxygen content on the radial hydride precipitation behaviors during cool-down processes. The oxidized cladding tube specimens were heated up to 400 degrees C and then cooled down to room temperature at cooling rates of 03, 2.0 or 8.0 degrees C/min under tensile hoop stresses of 80, 100 or 150 MPa. The amount of the radial hydrides precipitated and their growth during the cool-down processes were found to be strongly dependent upon the hydrogen content, tensile hoop stress, cooling rate and oxygen content. The lower hydrogen content, the higher tensile hoop stress, the slower cooling rate and the lower oxygen content generated the larger fraction of radial hydrides and the longer radial hydride length. These phenomena may be explained by the solubility difference between room temperature and 400 degrees C, the effect of tensile hoop stress on the radial hydride nucleation energy, cooling-ratedependent hydrogen super-saturation and high temperature residence time, and the effect of undissolved circumferential hydrides on the radial hydride precipitation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 34 条
[1]  
Alam A.M., 2008, J ASTM INT, V5
[2]   Effects of hydrogen content and temperature on fracture toughness of Zircaloy-4 [J].
Bertolino, G ;
Meyer, G ;
Ipiña, JP .
JOURNAL OF NUCLEAR MATERIALS, 2003, 320 (03) :272-279
[3]  
Bouffioux P., 2013, TOPFUEL 2013
[4]   Hydride reorientation in Zircaloy-4 cladding [J].
Chu, H. C. ;
Wu, S. K. ;
Kuo, R. C. .
JOURNAL OF NUCLEAR MATERIALS, 2008, 373 (1-3) :319-327
[5]  
Chung H., 2000, P INT TOP M LIGHT WA, P325
[6]  
Chung H., 2004, P INT M LWR FUEL PER
[7]   In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation [J].
Colas, K. B. ;
Motta, A. T. ;
Almer, J. D. ;
Daymond, M. R. ;
Kerr, M. ;
Banchik, A. D. ;
Vizcaino, P. ;
Santisteban, J. R. .
ACTA MATERIALIA, 2010, 58 (20) :6575-6583
[8]  
Daum R.S., 2005, P WAT REACT FUEL PER
[9]   Radial-hydride embrittlement of high-burnup Zircaloy-4 fuel cladding [J].
Daum, Robert S. ;
Majumdar, Saurin ;
Liu, Yung ;
Billone, Michael C. .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2006, 43 (09) :1054-1067
[10]   Stress-induced reorientation of hydrides and mechanical properties of zircaloy-4 cladding tubes [J].
Hong, SI ;
Lee, KW .
JOURNAL OF NUCLEAR MATERIALS, 2005, 340 (2-3) :203-208