Determination of Dirac operator with eigenparameter-dependent boundary conditions from interior spectral data

被引:3
作者
Yang, Chuan-Fu [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Appl Math, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirac operator; eigenparameter-dependent boundary conditions; inverse problem; eigenvalue; interior spectral data; STURM-LIOUVILLE PROBLEM; INVERSE NODAL PROBLEMS; PARAMETER; SYSTEM;
D O I
10.1080/17415977.2011.624618
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, inverse spectra problems for Dirac operator with eigenparameter-dependent boundary conditions are studied. By using the approach similar to those in Hochstadt and Lieberman [H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math. 34 (1978), pp. 676-680] and Ramm [A.G. Ramm, Property C for ODE and applications to inverse problems, Operator theory and applications, Vol. 25, AMS, Providence, RI, 2000, pp. 15-75], we prove that (1) a set of values of eigenfunctions at the midpoint of the interval [0, 1] and one spectrum suffice to determine the potential Q(x) on the interval [0, 1] and all parameters in the boundary conditions; (2) some information on eigenfunctions at an internal point b is an element of (1/2, 1) and parts of two spectra suffice to determine the potential Q(x) on the interval [0, 1] and all parameters in the boundary conditions.
引用
收藏
页码:351 / 369
页数:19
相关论文
共 32 条