Some new fractional quantum integral inequalities

被引:15
作者
Yang, Wengui [1 ]
机构
[1] Sanmenxia Polytech, Minist Publ Educ, Sanmenxia 472000, Peoples R China
关键词
Fractional q-integral inequalities; Chebyshev type inequalities; Cauchy's inequality; Holder's inequality; Minkowski's inequality; DERIVATIVES;
D O I
10.1016/j.aml.2011.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we employ a fractional q-integral on the specific time scale T-t0 = {t : t = t(0)q(n), n a nonnegative integer } boolean OR {0}, where t(0) is an element of R and 0 < q < 1, to establish two fractional q-integral Chebyshev type inequalities using one or two fractional parameters. Furthermore, other fractional q-integral inequalities related to Cauchy's inequality, Holder's inequality and Minkowski's inequality are also obtained. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:963 / 969
页数:7
相关论文
共 15 条
[11]   ON MINKOWSKI AND HERMITE-HADAMARD INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRATION [J].
Dahmani, Zoubir .
ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (01) :51-58
[12]   Fractional integral inequalities and applications [J].
Denton, Z. ;
Vatsala, A. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1087-1094
[13]   Fractional Quantum Integral Inequalities [J].
Ogunmez, Hasan ;
Ozkan, Umut Mutlu .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
[14]  
PECARIC JE, 1991, J MATH ANAL APPL, V158, P349
[15]   A generalization of the concept of q-fractional integrals [J].
Rajkovic, Predrag M. ;
Marinkovic, Sladjana D. ;
Stankovic, Miomir S. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (10) :1635-1646