Some new fractional quantum integral inequalities

被引:15
作者
Yang, Wengui [1 ]
机构
[1] Sanmenxia Polytech, Minist Publ Educ, Sanmenxia 472000, Peoples R China
关键词
Fractional q-integral inequalities; Chebyshev type inequalities; Cauchy's inequality; Holder's inequality; Minkowski's inequality; DERIVATIVES;
D O I
10.1016/j.aml.2011.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we employ a fractional q-integral on the specific time scale T-t0 = {t : t = t(0)q(n), n a nonnegative integer } boolean OR {0}, where t(0) is an element of R and 0 < q < 1, to establish two fractional q-integral Chebyshev type inequalities using one or two fractional parameters. Furthermore, other fractional q-integral inequalities related to Cauchy's inequality, Holder's inequality and Minkowski's inequality are also obtained. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:963 / 969
页数:7
相关论文
共 15 条
[1]   CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
AGARWAL, RP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 :365-&
[2]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[3]   The tanh and the sine-cosine methods for the complex modified K dV and the generalized KdV and the generalized K dV equations [J].
Wazwaz, AM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (7-8) :1101-1112
[4]   Opial type inequalities involving Riemann-Liouville fractional derivatives of two functions with applications [J].
Anastassiou, George A. .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (3-4) :344-374
[5]   Multivariate fractional Ostrowski type inequalities [J].
Anastassiou, George A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (03) :434-447
[6]   Hilbert-Pachpatte type fractional integral inequalities [J].
Anastassiou, George A. .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (7-8) :1539-1550
[7]   Fractional q-calculus on a time scale [J].
Atici, Ferhan M. ;
Eloe, Paul W. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (03) :333-344
[8]  
Belarbi S., 2009, J. Inequal. Pure Appl. Math., V10, P1
[9]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[10]  
Dahmani Z., 2010, Int. J. Nonlinear Sci., V9, P493