Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability

被引:13
|
作者
de Frahan, M. T. Henry [1 ]
Belof, J. L. [2 ]
Cavallo, R. M. [2 ]
Raevsky, V. A. [3 ]
Ignatova, O. N. [3 ]
Lebedev, A. [3 ]
Ancheta, D. S. [2 ]
El-dasher, B. S. [2 ]
Florando, J. N. [2 ]
Gallegos, G. F. [2 ]
Johnsen, E. [1 ]
LeBlanc, M. M. [2 ]
机构
[1] Univ Michigan, Mech Engn, Ann Arbor, MI 48109 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Russian Fed Nucl Ctr VNIIEF, Sarov 607188, Russia
关键词
CONSTITUTIVE MODEL; STRAIN-RATE; DEFORMATION; TEXTURE; STRESS;
D O I
10.1063/1.4922336
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a set of high explosive driven Rayleigh-Taylor strength experiments for beryllium to produce data to distinguish predictions by various strength models. Design simulations using existing strength model parameterizations from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, suggests growth consistent with little material strength. We focus mostly on efforts to simulate the data using published strength models as well as the more recent RING relaxation model developed at VNIIEF. The results of the strength experiments indicate weak influence of strength in mitigating the growth with the RING model coming closest to predicting the material behavior. Finally, we present shock and ramp-loading recovery experiments. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 30 条
  • [1] Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures
    Park, Hye-Sook
    Remington, B. A.
    Becker, R. C.
    Bernier, J. V.
    Cavallo, R. M.
    Lorenz, K. T.
    Pollaine, S. M.
    Prisbrey, S. T.
    Rudd, R. E.
    Barton, N. R.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [2] Using the SMG scheme to study the Rayleigh-Taylor instability growth in solids
    Luttwak, Gabi
    COMPUTERS & FLUIDS, 2020, 208
  • [3] Surface Expressions of Rayleigh-Taylor Instability in Continental Interiors
    Wang Huilin
    Currie, Claire A.
    Zhan Yan
    ACTA GEOLOGICA SINICA-ENGLISH EDITION, 2014, 88 (03) : 1004 - 1016
  • [4] Numerical simulations of onset and growth of Rayleigh-Taylor instability involving solids in converging geometry
    Chang, C. H.
    Douglass, R. W.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 411
  • [5] Pattern formation in 3-D numerical models of down-built diapirs initiated by a Rayleigh-Taylor instability
    Fernandez, Naiara
    Kaus, Boris J. P.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 202 (02) : 1253 - 1270
  • [6] Rayleigh-Taylor instability in accelerated elastic-solid slabs
    Piriz, S. A.
    Piriz, A. R.
    Tahir, N. A.
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [7] Flow Stress of beryllium: Attempt for a Bayesian Crossed-data Analysis from Hopkinson Bars to Rayleigh-Taylor Instabilities
    Seisson, Gabriel
    Dubois, Vincent
    Bolis, Cyril
    Denoual, Christophe
    12TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING (DYMAT 2018), 2018, 183
  • [8] Design of a Rayleigh-Taylor experiment to measure strength at high pressures
    Mikaelian, Karnig O.
    PHYSICS OF PLASMAS, 2010, 17 (09)
  • [9] Viscous Rayleigh-Taylor Instability Experiments at High Pressure and Strain Rate
    Park, Hye-Sook
    Lorenz, K. T.
    Cavallo, R. M.
    Pollaine, S. M.
    Prisbrey, S. T.
    Rudd, R. E.
    Becker, R. C.
    Bernier, J. V.
    Remington, B. A.
    PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [10] Phase-field formulated meshless simulation of axisymmetric Rayleigh-Taylor instability problem
    Rana, K. B.
    Mavric, B.
    Zahoor, R.
    Sarler, B.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 169