The enhanced thermal transport properties of a heat spreader assembled using non-covalent functionalized graphene

被引:6
作者
Ren, Li [1 ]
Wang, Mengjie [2 ]
Wei, Zhouqiao [1 ]
Cheng, Jingzhen [1 ]
Liu, Kuo [1 ]
Pan, Lulu [1 ]
Lao, Li [1 ]
Lu, Shaorong [1 ]
Yu, Jinhong [2 ,3 ]
机构
[1] Guilin Univ Technol, Sch Mat Sci & Engn, Key Lab New Proc Technol Nonferrous Met & Mat, Minist Educ, Guilin 541004, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Marine Mat & Relater Technol, Zhejiang Key Lab Marine Mat & Protect Technol, Ningbo 315201, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
MECHANICAL-PROPERTIES; CONDUCTIVITY; OXIDE; COMPOSITE; PERFORMANCE; MICROSCOPY; DISPERSION; SHEETS; PAPER;
D O I
10.1039/d0nj00936a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Though graphene paper consisting of layer-by-layer stacked graphene nanosheets (GNs) has been widely used as a heat spreader due to the high in-plane thermal conductivity, the drawback of graphene paper is that it shows low through-plane thermal conductivity at the same time. In this study, polyamine-functionalized perylene bisimide derivative (APBI)/graphene nanosheet hybrid paper (AGP) samples with a "brick-and-mortar" structure were fabricated via the noncovalent functionalization of GNs and APBI. APBI can not only greatly improve the through-plane thermal transport but it also improves the mechanical properties of AGP. The through-plane thermal conductivity of AGP reaches 6.67 W m(-1) K-1 with 42.36 wt% APBI and the tensile strength of AGP reaches 47.9 MPa with 14.22 wt% APBI. AGP, with both good thermal transport properties and mechanical properties, is expected to be used for thermal management applications as a heat spreader in industry.
引用
收藏
页码:9337 / 9343
页数:7
相关论文
共 55 条
[1]   Temperature dependence of atomic vibrations in mono-layer graphene [J].
Allen, Christopher S. ;
Liberti, Emanuela ;
Kim, Judy S. ;
Xu, Qiang ;
Fan, Ye ;
He, Kuang ;
Robertson, Alex W. ;
Zandbergen, Henny W. ;
Warner, Jamie H. ;
Kirkland, Angus I. .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (07)
[2]   Characterization of graphite implanted with chlorine ions using combined Raman microspectrometry and transmission electron microscopy on thin sections prepared by focused ion beam [J].
Ammar, M. R. ;
Rouzaud, J. N. ;
Vaudey, C. E. ;
Toulhoat, N. ;
Moncoffre, N. .
CARBON, 2010, 48 (04) :1244-1251
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/NMAT3064, 10.1038/nmat3064]
[5]  
Brunsveld L., 2018, CHEM-EUR J, V24, P7734
[6]   Mechanical Property Enhancement of Layered Reduced Graphene Oxide Papers by Non-Covalent Modification with Terephthalic Acid [J].
Chow, Philippe K. ;
Eksik, Osman ;
Koratkar, Nikhil .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (03) :337-341
[7]  
Corl D., 2012, ANGEW CHEM INT EDIT, V51, P6328
[8]   Polyamine-functionalized perylene bisimide for dispersion of graphene in water with high effectiveness and little impact on electrical conductivity [J].
Cui, Junshuo ;
Zhou, Shuxue .
JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (11)
[9]   An ultrahigh thermal conductive graphene flexible paper [J].
Ding, Jiheng ;
Zhao, Hongran ;
Wang, Qiaolei ;
Dou, Huimin ;
Chen, Hao ;
Yu, Haibin .
NANOSCALE, 2017, 9 (43) :16871-16878
[10]   Soluble Graphene: Generation of Aqueous Graphene Solutions Aided by a Perylenebisimide-Based Bolaamphiphile [J].
Englert, Jan M. ;
Roehrl, Jonas ;
Schmidt, Cordula D. ;
Graupner, Ralf ;
Hundhausen, Martin ;
Hauke, Frank ;
Hirsch, Andreas .
ADVANCED MATERIALS, 2009, 21 (42) :4265-+