Positive Solutions for Singular Complementary Lidstone Boundary Value Problems

被引:2
作者
Wang, Fanglei [1 ]
An, Yukun [2 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
关键词
DIFFERENTIAL-SYSTEMS; EXISTENCE;
D O I
10.1155/2011/714728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using fixed-point theorems of a cone, we investigate the existence and multiplicity of positive solutions for complementary Lidstone boundary value problems: (-1)(n)u((2n+1))(t) = h(t)f(u(t)), in 0 < t < 1, u(0) = 0, u((2i+1))(0) = u((2i+1))(1) = 0, 0 <= i <= n -1, where n is an element of N.
引用
收藏
页数:13
相关论文
共 10 条
[1]   Complementary Lidstone Interpolation and Boundary Value Problems [J].
Agarwal, Ravi P. ;
Pinelas, Sandra ;
Wong, Patricia J. Y. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
[2]   Positive Solutions of Singular Complementary Lidstone Boundary Value Problems [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
BOUNDARY VALUE PROBLEMS, 2010,
[3]  
[Anonymous], 1988, NOTES REPORTS MATH S
[4]   Positive solutions for 2p-order and 2q-order systems of singular boundary value problems with integral boundary conditions [J].
Kang, Ping ;
Xu, JuanJuan ;
Wei, Zhongli .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2767-2786
[5]   Positive solutions for 2p-order and 2q-order nonlinear ordinary differential systems [J].
Ru, Yuanfang ;
An, Yukun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) :1093-1104
[6]   Positive solutions for a second-order differential system [J].
Wang, Fanglei ;
An, Yukun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :370-375
[7]   A class of 2nth-order singular boundary value problems [J].
Wei, Zhongli ;
Pang, Changci .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (06) :1225-1245
[8]   Existence of positive solutions for 2m-order nonlinear differential systems [J].
Yang, XJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (1-2) :77-95
[9]   Existence of solutions. for 2n-order boundary value problem [J].
Yang, XJ .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 137 (01) :77-87
[10]  
Yao QL, 2004, COMPUT MATH APPL, V47, P1195, DOI [10.1016/S0898-1221(04)90113-7, 10.1016/j.camwa.2004.04.004]