Kazhdan-Lusztig conjecture via zastava spaces

被引:0
作者
Braverman, Alexander [1 ,2 ,3 ]
Finkelberg, Michael [3 ,4 ,5 ]
Nakajima, Hiraku [6 ,7 ]
机构
[1] Univ Toronto, Dept Math, Waterloo, ON N2L 2Y5, Canada
[2] Univ Toronto, Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Skolkovo Inst Sci & Technol, Bolshoi Bulvar 30,Bld 1, Moscow 121205, Russia
[4] Natl Res Univ Higher Sch Econ, Dept Math, 6 Usacheva St, Moscow 119048, Russia
[5] Inst Informat Transmiss Problems, Bolshoi Karetnyi 19, Moscow 127051, Russia
[6] Univ Tokyo, Kavli Inst Phys & Math Univ WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[7] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2022年 / 2022卷 / 787期
基金
日本学术振兴会;
关键词
KOSZUL DUALITY; QUIVER VARIETIES; LOCALIZATION; CATEGORY; ALGEBRAS; MODULES;
D O I
10.1515/crelle-2022-0013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deduce the Kazhdan-Lusztig conjecture on the multiplicities of simple modules over a simple complex Lie algebra in Verma modules in category O from the equivariant geometric Satake correspondence and the analysis of torus fixed points in zastava spaces. We make similar speculations for the affine Lie algebras and W-algebras.
引用
收藏
页码:45 / 78
页数:34
相关论文
共 38 条
  • [21] A note on a symplectic structure on the space of G-monopoles
    Finkelberg, M
    Kuznetsov, A
    Markarian, N
    Mirkovic, I
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (02) : 411 - 421
  • [22] A Note on a Symplectic Structure on the Space of G-Monopoles (vol 201, pg 411, 1999)
    Finkelberg, Michael
    Kuznetsov, Alexander
    Markarian, Nikita
    Mirkovic, Ivan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (02) : 1153 - 1155
  • [23] Frenkel E., 2009, REPRESENT THEOR, V13, P470
  • [24] Gaitsgory D., 2005, NOTION CATEGORY OVER
  • [25] Sheaves of categories and the notion of 1-affineness
    Gaitsgory, Dennis
    [J]. STACKS AND CATEGORIES IN GEOMETRY, TOPOLOGY, AND ALGEBRA, 2015, 643 : 127 - 225
  • [26] Ginzburg V., 1993, Internat. Math. Res. Notices (IMRN), V1993, P67, DOI DOI 10.1155/S1073792893000078
  • [27] Goresky M, 1998, INVENT MATH, V131, P25
  • [28] Kazhdan-Lusztig conjecture for affine lie algebras with negative level .2. Nonintegral case
    Kashiwara, M
    Tanisaki, T
    [J]. DUKE MATHEMATICAL JOURNAL, 1996, 84 (03) : 771 - 813
  • [29] Kashiwara M., 1998, MIKIO SATO GREAT JAP, V2, P779
  • [30] MONODROMIC SYSTEMS ON AFFINE FLAG MANIFOLDS
    LUSZTIG, G
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 445 (1923): : 231 - 246