Kazhdan-Lusztig conjecture via zastava spaces

被引:0
作者
Braverman, Alexander [1 ,2 ,3 ]
Finkelberg, Michael [3 ,4 ,5 ]
Nakajima, Hiraku [6 ,7 ]
机构
[1] Univ Toronto, Dept Math, Waterloo, ON N2L 2Y5, Canada
[2] Univ Toronto, Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Skolkovo Inst Sci & Technol, Bolshoi Bulvar 30,Bld 1, Moscow 121205, Russia
[4] Natl Res Univ Higher Sch Econ, Dept Math, 6 Usacheva St, Moscow 119048, Russia
[5] Inst Informat Transmiss Problems, Bolshoi Karetnyi 19, Moscow 127051, Russia
[6] Univ Tokyo, Kavli Inst Phys & Math Univ WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[7] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2022年 / 2022卷 / 787期
基金
日本学术振兴会;
关键词
KOSZUL DUALITY; QUIVER VARIETIES; LOCALIZATION; CATEGORY; ALGEBRAS; MODULES;
D O I
10.1515/crelle-2022-0013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deduce the Kazhdan-Lusztig conjecture on the multiplicities of simple modules over a simple complex Lie algebra in Verma modules in category O from the equivariant geometric Satake correspondence and the analysis of torus fixed points in zastava spaces. We make similar speculations for the affine Lie algebras and W-algebras.
引用
收藏
页码:45 / 78
页数:34
相关论文
共 38 条
  • [1] [Anonymous], 2013, SYMMETRIES INTEGRABL
  • [2] [Anonymous], 2006, INT C MATHEMATICIANS
  • [3] Arakawa T, 2007, INVENT MATH, V169, P219, DOI 10.1007/s00222-007-0046-1
  • [4] Singular support of coherent sheaves and the geometric Langlands conjecture
    Arinkin, D.
    Gaitsgory, D.
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2015, 21 (01): : 1 - 199
  • [5] Modules over the small quantum group and semi-infinite flag manifold
    Arkhipov, S
    Bezrukavnikov, R
    Braverman, A
    Gaitscory, D
    Mikovic, I
    [J]. TRANSFORMATION GROUPS, 2005, 10 (3-4) : 279 - 362
  • [6] Another realization of the category of modules over the small quantum group
    Arkhipov, S
    Gaitsgory, D
    [J]. ADVANCES IN MATHEMATICS, 2003, 173 (01) : 114 - 143
  • [7] Koszul duality patterns in representation theory
    Beilinson, A
    Ginzburg, V
    Soergel, W
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) : 473 - 527
  • [8] Beilinson A., 1993, Seminar, V16, P1
  • [9] A DG guide to Voevodsky's motives
    Beilinson, Alexander
    Vologodsky, Vadim
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 17 (06) : 1709 - 1787
  • [10] Bezrukavnikov R, 2013, REPRESENT THEOR, V17, P1