BOUNDS ON THE FIRST NONZERO EIGENVALUE FOR SELF-ADJOINT BOUNDARY VALUE PROBLEMS ON NETWORKS

被引:1
作者
Bendito, E. [1 ]
Carmona, A. [1 ]
Encinas, A. M. [1 ]
Gesto, J. M. [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 3, ES-08034 Barcelona, Spain
关键词
Networks; self-adjoint eigenvalue problems; discrete laplacian; equilibrium measures; distance-regular graphs;
D O I
10.2298/AADM0801092B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We aim here at obtaining bounds on the first nonzero eigenvalue for self-adjoint boundary value problems on a weighted network by means of equilibrium measures, that include the study of DIRICHLET, NEUMANN and Mixed problems. We also show the sharpness of these bounds throughout the analysis of some examples. In particular we emphasize the case of distance-regular graphs and we show that the obtained bounds are better than those known until now.
引用
收藏
页码:92 / 106
页数:15
相关论文
共 9 条
[1]  
[Anonymous], 1997, CBMS REG C SER MATH
[2]   Solving boundary value problems on networks using equilibrium measures [J].
Bendito, E ;
Carmona, A ;
Encinas, AM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (01) :155-176
[3]   Shortest paths in distance-regular graphs [J].
Bendito, E ;
Carmona, A ;
Encinas, AM .
EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (02) :153-166
[4]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[5]   SOME GEOMETRIC ASPECTS OF GRAPHS AND THEIR EIGENFUNCTIONS [J].
FRIEDMAN, J .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (03) :487-525
[6]  
MOHAR B, 1998, LINEAR ALGEBRA APPL, V199, P119
[7]  
Ohno Y., 1994, INTERDISCIPLINARY IN, V1, P33, DOI DOI 10.4036/IIS.1994.33
[8]  
Tan J., 1999, INTERDISCIPLINARY IN, V5, P157
[9]   Eigenvalue comparison theorems of the discrete Laplacians for a graph [J].
Urakawa, H .
GEOMETRIAE DEDICATA, 1999, 74 (01) :95-112