Using a SSVEP-BCI to Command a Robotic Wheelchair

被引:0
|
作者
Torres Mueller, Sandra Mara [1 ]
Bastos-Filho, Teodiano Freire [2 ]
Sarcinelli-Filho, Mario [2 ]
机构
[1] Fed Univ Espirito Santo UFES, Dept Comp Engn, No Ctr CEUNES, Rodovia BR101 Norte,Km 60, BR-29932540 Sao Mateus, ES, Brazil
[2] Fed Univ Espirito Santo UFES, Dept Elect Engn, BR-29075910 Goiabeiras, Brazil
来源
2011 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE) | 2011年
关键词
BRAIN-COMPUTER INTERFACE; VISUAL-EVOKED POTENTIALS; EEG; COMMUNICATION; PEOPLE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents a Brain-Computer Interface (BCI) based on the Steady-State Visual Evoked Potential (SSVEP) that can discriminate four classes once per second. A statistical test is used to extract the evoked response and a decision tree is used to discriminate the stimulus frequency. Designed according such approach, volunteers were capable to online operate a BCI with hit rates varying from 60% to 100%. Moreover, one of the volunteers could guide a robotic wheelchair through an indoor environment using such BCI. As an additional feature, such BCI incorporates a visual feedback, which is essential for improving the performance of the whole system. All of this aspects allow to use this BCI to command a robotic wheelchair efficiently.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Proposal of a SSVEP-BCI to command a robotic wheelchair
    Müller S.M.T.
    Bastos T.F.
    Filho M.S.
    Müller, S.M.T. (sandramuller@ceunes.ufes.br), 2013, Springer Science and Business Media, LLC (24) : 97 - 105
  • [2] An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator
    Na, Rui
    Hu, Chun
    Sun, Ying
    Wang, Shuai
    Zhang, Shuailei
    Han, Mingzhe
    Yin, Wenhan
    Zhang, Jun
    Chen, Xinlei
    Zheng, Dezhi
    DIGITAL SIGNAL PROCESSING, 2021, 116
  • [3] A high performance SSVEP-BCI without gazing
    Lopez-Gordo, M. A.
    Pelayo, F.
    Prieto, A.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [4] Reprint of: An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator
    Na, Rui
    Hu, Chun
    Sun, Ying
    Wang, Shuai
    Zhang, Shuailei
    Han, Mingzhe
    Yin, Wenhan
    Zhang, Jun
    Chen, Xinlei
    Zheng, Dezhi
    DIGITAL SIGNAL PROCESSING, 2022, 125
  • [5] A SSVEP-BCI Setup Based on Depth-of-Field
    Cotrina, Anibal
    Benevides, Alessandro Botti
    Castillo-Garcia, Javier
    Benevides, Alessander Botti
    Rojas-Vigo, David
    Ferreira, Andre
    Bastos-Filho, Teodiano Freire
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (07) : 1047 - 1057
  • [6] Improving SSVEP-BCI Performance Using Pre-Trial Normalization Methods
    Henshaw, James
    Liu, Wei
    Romano, Daniela M.
    2017 8TH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFOCOMMUNICATIONS (COGINFOCOM), 2017, : 247 - 252
  • [7] Feature Extraction Techniques Based on Power Spectrum for a SSVEP-BCI
    Castillo, Javier
    Mueller, Sandra
    Caicedo, Eduardo
    Bastos, Teodiano
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 1051 - 1055
  • [8] Rendering Stimuli for SSVEP-BCI and Attention Tracking with Blinker
    Chabuda, A.
    Dovgialo, M.
    Duszyk, A.
    Zygierewicz, J.
    Pawlisz, M.
    Durka, P.
    ACTA PHYSICA POLONICA A, 2021, 139 (04) : 426 - 431
  • [9] Evaluation of an online SSVEP-BCI with fast system setup
    Li, Xiaodong
    Wang, Junlin
    Cao, Xiang
    Huang, Yong
    Huang, Wei
    Wan, Feng
    To, Michael Kai-Tsun
    Xie, Sheng Quan
    JOURNAL OF NEURORESTORATOLOGY, 2024, 12 (02):
  • [10] BETA: A Large Benchmark Database Toward SSVEP-BCI Application
    Liu, Bingchuan
    Huang, Xiaoshan
    Wang, Yijun
    Chen, Xiaogang
    Gao, Xiaorong
    FRONTIERS IN NEUROSCIENCE, 2020, 14