Modular lattices over cyclotomic fields

被引:6
作者
Bayer-Fluckiger, E [1 ]
Suarez, I [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
关键词
lattices; number fields; modular forms;
D O I
10.1016/j.jnt.2004.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with modular lattices over cyclotomic fields. In particular, the notion of Arakelov modular ideal lattice is introduced. All the cyclotomic fields over which there exists an Arakelov modular lattice of given level are characterised. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 411
页数:18
相关论文
共 17 条
  • [1] [Anonymous], 2000, J THEOR NOMBRES BORD
  • [2] Batut C., 1995, EXP MATH, V4, P175
  • [3] Bayer-Fluckiger E., 1999, CONT MATH, V241, P69
  • [4] Bayer-Fluckiger Eva, 2002, PAN NUMB THEOR VIEW, P168
  • [5] DEFINITE UNIMODULAR LATTICES HAVING AN AUTOMORPHISM OF GIVEN CHARACTERISTIC POLYNOMIAL
    BAYERFLUCKIGER, E
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (04) : 509 - 538
  • [6] BAYERFLUCKIGER E, 1994, J REINE ANGEW MATH, V451, P51
  • [7] NEBE G, 1995, MEM AM MATH SOC, V116, P74
  • [8] NEBE G, 2002, JAHRESBER DTSCH MATH, V104, P125
  • [9] O'Meara O T., 2000, Introduction to Quadratic Forms
  • [10] Computing isometries of lattices
    Plesken, W
    Souvignier, B
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 327 - 334