Semantic image segmentation network based on deep learning

被引:1
作者
Chen, Bo [1 ]
Zhang, Jiahao [1 ]
Zhou, Jianbang [1 ]
Chen, Zhong [1 ]
Yang, Tian [2 ]
Zhang, Yanna [3 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Artificial Intelligence & Automat, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan, Hubei, Peoples R China
[2] Chinese Acad Sci, Inst Aerosp Informat Innovat, Beijing, Peoples R China
[3] Henan Univ, Dept Lab & Equipment Management, Kaifeng, Henan, Peoples R China
来源
MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION | 2020年 / 11429卷
关键词
Semantic Segmentation; Attention Seg-Net; Deep Learning; Attention gate;
D O I
10.1117/12.2538067
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Semantic segmentation is one of the basic themes in computer vision. Its purpose is to assign semantic tags to each pixel of an image, which has been applied in many fields such as medical field, intelligent transportation and remote sensing image. In this paper, we use deep learning to solve the task of remote sensing semantic image segmentation. We propose an algorithm for semantic segmentation of the Attention Seg-Net network combined with SegNet and attention gate. Our proposed network can better segment vegetation, buildings, water bodies and roads in the test set of remote sensing images.
引用
收藏
页数:5
相关论文
共 11 条
[1]  
[Anonymous], PROC CVPR IEEE
[2]  
[Anonymous], 2015, PROC CVPR IEEE
[3]  
[Anonymous], 2017, IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2016.2644615
[4]   A Robust Turn Detection Algorithm Based on Periodic Signal Identification [J].
Chen, Yu ;
Luo, Haiyong ;
Zhao, Fang ;
Shao, Wenhua ;
Wang, Qu .
CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2018 PROCEEDINGS, VOL I, 2018, 497 :325-339
[5]  
Culurciello E., 2016, ENET DEEP NEURAL NET
[6]  
Krizhevsky A., 2017, COMMUN ACM, V60, P84, DOI [DOI 10.1145/3065386, 10.1145/3065386, DOI 10.2165/00129785-200404040-00005]
[7]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[8]  
Oktay O., 2018, PROC INT C MED IMAG
[9]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[10]  
Simonyan K., 2014, 14091556 ARXIV