Asymptotically Periodic Solution of a Stochastic Differential Equation

被引:1
作者
Manou-Abi, Solym Mawaki [1 ,2 ]
Dimbour, William [3 ]
机构
[1] CUFR Mayotte, Dept Sci & Technol, Dembeni, France
[2] Univ Montpellier, CNRS, UMR 5149, Inst Montpellierain Alexander Grothendieck, Montpellier, France
[3] Univ Guyane, UMR Espace Dev, Campus Troubiran, F-97300 Guyane, Fwi, France
关键词
Square mean asymptotically periodic; Square mean periodic limit; Stochastic differential equation; Semigroup mild solution; AUTOMORPHIC SOLUTIONS; DRIVEN;
D O I
10.1007/s40840-019-00717-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first introduce the concept and properties of omega-periodic limit process. Then, we apply specific criteria obtained to investigate asymptotically omega-periodicmild solutions of a Stochastic differential equation driven by a Brownian motion. Finally, we give an example to show usefulness of the theoretical results that we obtained in the paper.
引用
收藏
页码:911 / 939
页数:29
相关论文
共 18 条
[1]  
AHMAD S, 1988, P AM MATH SOC, V102, P855
[2]  
Bezandry P, 2010, COMMUN MATH ANAL, V8, P103
[3]  
Bezandry P.H., 2007, ELECT J DIFFERENTIAL, V117, P1
[4]   Asymptotically almost periodic solutions of stochastic functional differential equations [J].
Cao, Junfei ;
Yang, Qigui ;
Huang, Zaitang ;
Liu, Qing .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) :1499-1511
[5]   Square-mean almost automorphic mild solutions to non-autonomous stochastic differential equations in Hilbert spaces [J].
Chang, Yong-Kui ;
Zhao, Zhi-Han ;
N'Guerekata, G. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (02) :384-391
[6]   A new composition theorem for square-mean almost automorphic functions and applications to stochastic differential equations [J].
Chang, Yong-Kui ;
Zhao, Zhi-Han ;
N'Guerekata, G. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) :2210-2219
[7]  
Corduneanu C., 2009, ALMOST PERIODIC OSCI, DOI DOI 10.1007/978-0-387-09819-7
[8]   S-asymptotically ω-periodic solutions of semilinear fractional integro-differential equations [J].
Cuevas, Claudio ;
de Souza, Julio Cesar .
APPLIED MATHEMATICS LETTERS, 2009, 22 (06) :865-870
[9]  
DIMBOUR W, 2017, INT J PURE APPL MATH, V113, P59
[10]  
Dimbour W, 2018, MEDITERR J MATH, V15, DOI 10.1007/s00009-018-1071-6