Single Interdigital Transducer Approach for Gravimetrical SAW Sensor Applications in Liquid Environments

被引:12
作者
Vu Hoa Nguyen [1 ]
Kaulen, Corinna [2 ,3 ]
Simon, Ulrich [2 ,3 ]
Schnakenberg, Uwe [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Mat Elect Engn 1, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany
[3] Rhein Westfal TH Aachen, JARA Fundamentals Future Informat Technol, D-52074 Aachen, Germany
关键词
SAW; impedance sensor; mass sensitive; S-11; gold nanoparticle; ACOUSTIC-WAVE SENSOR; GOLD NANOPARTICLES; TEMPERATURE; RESONATOR; IMMUNOSENSOR; ADSORPTION; BIOSENSOR; DEVICES; SYSTEM; QUANTIFICATION;
D O I
10.3390/s17122931
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Surface acoustic wave (SAW) devices are well known for mass-sensitive sensor applications. In biosensing applications, chemical and biochemically evoked binding processes on surfaces are detected in liquid environments using delay line or resonator sensor configurations, preferably in combination with the appropriate microfluidic devices. All configurations share the common feature of analyzing the transmission characteristic of the propagating SAW. In this paper, a novel SAW-based impedance sensor type is introduced which uses only one interdigital transducer (IDT), simultaneously as the SAW generator and the sensor element. Here, the input port reflection coefficient S-11 is measured at the IDT instead of the commonly used S-21 transmission forward gain parameter. Thus, a sharp and distinct peak of the S-11 spectrum is obtained, enabling a comfortable direct readout of the sensor signal. Proof of the concept was gained by analyzing the specific binding of the 4-mercaptophenylacetic acid gold nanoparticles (MPA-AuNP) directly to the IDT surface. The corresponding binding kinetic of the MPA-AuNP on the functionalized gold surface has been analyzed and a sensitivity of 7.4 m Omega nM(-1) has been determined.
引用
收藏
页数:13
相关论文
共 51 条
[1]   Irreversible adsorption of particles on heterogeneous surfaces [J].
Adamczyk, Z ;
Jaszczólt, K ;
Michna, A ;
Siwek, B ;
Szyk-Warszynska, L ;
Zembala, M .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2005, 118 (1-3) :25-42
[2]   Identification and Quantification of Aqueous Aromatic Hydrocarbons Using SH-Surface Acoustic Wave Sensors [J].
Bender, Florian ;
Mohler, Rachel E. ;
Ricco, Antonio J. ;
Josse, Fabien .
ANALYTICAL CHEMISTRY, 2014, 86 (03) :1794-1799
[3]   SENSORS BASED ON PIEZOELECTRIC RESONATORS [J].
BENES, E ;
GROSCHL, M ;
BURGER, W ;
SCHMID, M .
SENSORS AND ACTUATORS A-PHYSICAL, 1995, 48 (01) :1-21
[4]  
Binhack M, 2000, ULTRASON, P495, DOI 10.1109/ULTSYM.2000.922599
[5]   Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor [J].
Bisoffi, M. ;
Hjelle, B. ;
Brown, D. C. ;
Branch, D. W. ;
Edwards, T. L. ;
Brozik, S. M. ;
Bondu-Hawkins, V. S. ;
Larson, R. S. .
BIOSENSORS & BIOELECTRONICS, 2008, 23 (09) :1397-1403
[6]   Love Wave Characterization of the Shear Modulus Variations of Mesoporous Sensitive Films During Vapor Sorption [J].
Blanc, Laurianne ;
Tetelin, Angelique ;
Boissiere, Cedric ;
Tortissier, Gregory ;
Dejous, Corinne ;
Rebiere, Dominique .
IEEE SENSORS JOURNAL, 2012, 12 (05) :1442-1449
[7]   Directed Self-Assembly and Infrared Reflection Absorption Spectroscopy Analysis of Amphiphilic and Zwitterionic Janus Gold Nanoparticles [J].
Bourone, Svenja D. M. ;
Kaulen, Corinna ;
Homberger, Melanie ;
Simon, Ulrich .
LANGMUIR, 2016, 32 (04) :954-962
[8]  
Bristol T. W., 1972, 1972 IEEE ULTR S P, P343, DOI DOI 10.1109/ULT-SYM.1972.196097
[9]   A surface acoustic wave sensor modified from a wireless transmitter for the monitoring of the growth of bacteria [J].
Chang, Ku-Shang ;
Chang, Chen-Kai ;
Chen, Chien-Yuan .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 125 (01) :207-213
[10]   Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates [J].
Chiu, Chi-Shun ;
Gwo, Shangir .
ANALYTICAL CHEMISTRY, 2008, 80 (09) :3318-3326