Leveraging blood and tissue CD4+T cell heterogeneity at the single cell level to identify mechanisms of disease in rheumatoid arthritis

被引:15
作者
Fonseka, Chamith Y. [1 ,2 ,3 ,4 ,5 ,6 ]
Rao, Deepak A. [1 ,2 ]
Raychaudhuri, Soumya [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Brigham & Womens Hosp, Div Rheumatol Immunol & Allergy, 75 Francis St, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Div Genet, 75 Francis St, Boston, MA 02115 USA
[4] Broad Inst Massachusetts Tech Inst & Harvard Univ, Program Med & Populat Genet, Cambridge, MA 02138 USA
[5] Brigham & Womens Hosp, Ctr Data Sci, 75 Francis St, Boston, MA 02115 USA
[6] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[7] Univ Manchester, Fac Biol Med & Hlth, Manchester, Lancs, England
基金
美国国家卫生研究院;
关键词
REGULATORY T-CELLS; MASS CYTOMETRY; PERIPHERAL-BLOOD; GENE-EXPRESSION; SYNOVIAL-FLUID; RNA-SEQ; IMMUNE; SUBSETS; FLOW; DIFFERENTIATION;
D O I
10.1016/j.coi.2017.08.005
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
CD4+ T cells have been long known to play an important role in the pathogenesis of rheumatoid arthritis (RA), but the specific cell populations and states that drive the disease have been challenging to identify with low dimensional single cell data and bulk assays. The advent of high dimensional single cell technologies - like single cell RNA-seq or mass cytometry - has offered promise to defining key populations, but brings new methodological and statistical challenges. Recent single cell profiling studies have revealed a broad diversity of cell types among CD4+ T cells, identifying novel populations that are expanded or altered in RA. Here, we will review recent findings on CD4+ T cell heterogeneity and RA that have come from single cell profiling studies and discuss the best practices for conducting these studies.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 111 条
[1]  
Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
[2]   Epidemiology of adult rheumatoid arthritis [J].
Alamanos, Y ;
Drosos, AA .
AUTOIMMUNITY REVIEWS, 2005, 4 (03) :130-136
[3]  
Alunno A, 2015, MEDIAT INFLAMM, V2015
[4]   Effector T cells in rheumatoid arthritis: Lessons from animal models [J].
Alzabin, Saba ;
Williams, Richard O. .
FEBS LETTERS, 2011, 585 (23) :3649-3659
[5]  
Azizi E, 2017, GENOMICS COMPUT BIOL, P3
[6]   Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry [J].
Bandura, Dmitry R. ;
Baranov, Vladimir I. ;
Ornatsky, Olga I. ;
Antonov, Alexei ;
Kinach, Robert ;
Lou, Xudong ;
Pavlov, Serguei ;
Vorobiev, Sergey ;
Dick, John E. ;
Tanner, Scott D. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :6813-6822
[7]   High-dimensional analysis of the murine myeloid cell system [J].
Becher, Burkhard ;
Schlitzer, Andreas ;
Chen, Jinmiao ;
Mair, Florian ;
Sumatoh, Hermi R. ;
Teng, Karen Wei Weng ;
Low, Donovan ;
Ruedl, Christiane ;
Riccardi-Castagnoli, Paola ;
Poidinger, Michael ;
Greter, Melanie ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE IMMUNOLOGY, 2014, 15 (12) :1181-1189
[8]   Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development [J].
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad David ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Chen, Tiffany J. ;
Shenfeld, Daniel K. ;
Nolan, Garry P. ;
Pe'er, Dana .
CELL, 2014, 157 (03) :714-725
[9]   A deep profiler's guide to cytometry [J].
Bendall, Sean C. ;
Nolan, Garry P. ;
Roederer, Mario ;
Chattopadhyay, Pratip K. .
TRENDS IN IMMUNOLOGY, 2012, 33 (07) :323-332
[10]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696