Microstructural analysis on creep properties of dissimilar materials joints between T92 martensitic and HR3C austenitic steels

被引:50
作者
Cao, Jian [1 ]
Gong, Yi [1 ]
Yang, Zhen-Guo [1 ]
机构
[1] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2011年 / 528卷 / 19-20期
基金
中国国家自然科学基金;
关键词
T92; HR3C; Dissimilar materials joints; Creep cavity; Transcrystalline fracture; Intergranular fracture; MODIFIED 9CR-1MO STEEL; LONG-TERM SERVICE; MECHANICAL-PROPERTIES; HIGH-TEMPERATURE; METAL WELDS; STABILITY; DAMAGE; P92; X20CRMOV12.1; DEFORMATION;
D O I
10.1016/j.msea.2011.04.057
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper reports the creep rupture behaviors of T92/HR3C dissimilar materials joints. HR3C austenitic steel is welded with T92 martensitic steel to obtain T92/HR3C dissimilar materials joints. After welding, creep test is carried out at 625 degrees C in the stress range 110-180 MPa. The rupture locations of creep specimens are examined by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that the creep rupture mechanism of the joint is dependent on stress. When stresses >= 140 MPa, rupture location is at the 192 base material part and the connection of adjacent dimples results in transcrystalline fracture. For stresses <140 MPa, rupture location is at the 192 coarse-grained HAZ (CGHAZ) and M23C6 particles grown up as well as Laves phase ((Fe, Cr)(2) (W, Mo)) precipitation on grain boundaries leads to the creep cavities and intergranular fracture. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:6103 / 6111
页数:9
相关论文
共 36 条
[1]   Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature [J].
Abe, F ;
Horiuchi, T ;
Taneike, M ;
Sawada, K .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 378 (1-2) :299-303
[2]   FOURCRACK - An investigation of the creep performance of advanced high alloy steel welds [J].
Allen, D. J. ;
Harvey, B. ;
Brett, S. J. .
INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2007, 84 (1-2) :104-113
[3]   THE KINETICS OF DISLOCATION CLIMB OVER HARD PARTICLES .2. EFFECTS OF AN ATTRACTIVE PARTICLE DISLOCATION INTERACTION [J].
ARZT, E ;
ROSLER, J .
ACTA METALLURGICA, 1988, 36 (04) :1053-1060
[4]   Creep damage and expected creep life for welded 9-11% Cr steels [J].
Auerkari, P. ;
Holmstrom, S. ;
Veivo, J. ;
Salonen, J. .
INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2007, 84 (1-2) :69-74
[5]   STRESS GENERATION BY ELECTROMIGRATION [J].
BLECH, IA ;
HERRING, C .
APPLIED PHYSICS LETTERS, 1976, 29 (03) :131-133
[6]   Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant [J].
Ennis, PJ ;
Zielinska-Lipiec, A ;
Wachter, O ;
CzyrskaFilemonowicz, A .
ACTA MATERIALIA, 1997, 45 (12) :4901-4907
[7]   Pitting corrosion on 316L pipes in terephthalic acid (TA) dryer [J].
Gong, Y. ;
Cao, J. ;
Meng, X. -H. ;
Yang, Z. -G. .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2009, 60 (11) :899-908
[8]  
Haarmann K., 1999, THET91 P91 BOOK
[9]   MODEL FOR HIGH-TEMPERATURE DEFORMATION OF DISPERSION STRENGTHENED METALS BASED ON SUBSTRUCTURAL OBSERVATIONS IN NI-20CR-2THO2 [J].
HAUSSELT, JH ;
NIX, WD .
ACTA METALLURGICA, 1977, 25 (12) :1491-1502
[10]   An investigation of the embrittlement in X20CrMoV12.1 power plant steel after long-term service exposure at elevated temperature [J].
Hu, ZF ;
Yang, ZG .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 383 (02) :224-228